

OREGON PROCESSED VEGETABLE COMMISSION REPORTS 2022

Table of Contents

Reports

Researcher	Proposal Title	Page Number
Buckland, Kristine	Monitoring Soil Moisture and Temperature	1
North Willamette Research & Extension	Impacts on Soil Borne Fusarium Dieseases in	T
Center	Processing Vegetable Cropping Systems	
Myers, Jim		
Department of Horticulture	Green Bean Breeding & Evaluation	12
Myers, Jim		42
Department of Horticulture	Broccoli Breeding & Evaluation	43
Peachey, Ed	Seed Corn Maggot Contril in Snap Beans and	57
Department of Horticulture	Sweet Corn Without Chlorpyrifos (Lorsban)	
Peachey, Ed	Monitoring and Reporting Insect Pests in	63
Department of Horticulture	Cole Crops and Sweet Corn (VegNet)	05

Research/Extension Progress Report for 2020-2021 Funded Projects Progress Report for the Agricultural Research Foundation Oregon Processed Vegetable Commission

<u>Title:</u> Monitoring Soil Moisture and Temperature Impacts on Soilborne *Fusarium* Diseases in Processing Vegetable Cropping Systems

<u>Project Leader(s):</u> Kristine Buckland, Ext. Horticulture Specialist & Assistant Professor, OSU-North Willamette Research and Extension Center 15210 NE Miley Rd, Aurora, OR 97002 (503)506-0955

Cynthia M. Ocamb, Ext. Plant Pathology Specialist & Associate Professor, OSU-Botany & Plant Pathology 4575 SW Research Way, Corvallis, OR 97333 (541)737-4020

<u>Cooperator(s):</u> Three processed vegetable growers within the Willamette Valley

<u>Funding History</u>: Funds were awarded from OPVC in 2019 for \$32,409, 2020 for \$35,000, and \$16,090 in 2021.

<u>Abstract:</u> Sweet corn and snap bean production, amongst other vegetable crops grown in the Willamette Valley of Oregon, are impacted by soilborne diseases caused by *Fusarium* species. The decline in sweet corn yields due to Fusarium crown and stalk node rot as well as root rot in snap bean and sweet corn are well documented in the valley. The widespread presence and increasing disease pressure from *Fusarium* in the soils of western Oregon compels growers to define optimum management practices in order to minimize the impact from *Fusarium* diseases. It may be possible to reduce *Fusarium* diseases and their associated losses in sweet corn and snap bean fields by connecting the physical properties of the soil environment (temperature and moisture) with the levels of *Fusarium* which could then be used to refine cropping practices such as irrigation or crop rotation. We hypothesize that the incidence of *Fusarium* root disease can be predicted by soilborne *Fusarium* populations, soil temperature, and soil moisture levels. Our objectives in this project are to 1) Evaluate the soil conditions as a predictor of *Fusarium* levels in the soil and 2) Evaluate the *Fusarium* disease incidence and severity of crops in monitored sweet corn and snap bean fields.

Key Words: Fusarium, sweet corn, snap bean, soil moisture, soil temperature

Objective(s):

Objective 1: Evaluate soil conditions (temperature and moisture) as predictors of *Fusarium* levels in the soil.

Objective 2: Evaluate *Fusarium* disease incidence and severity of crops in monitored sweet corn and snap bean fields.

Procedures:

Objective 1. Evaluate soil conditions (temperature and moisture) as predictors of *Fusarium* levels in the

soil.

Soil monitoring was nearly continuous throughout all years of cropping and soil health data showed a wide range of microbial function indicators. The number of Fusarium colony forming units per gram of oven-dried soil were very high overall.

Three commercial field sites (Table 1) were used for this study. The first field was cropped with snap beans in 2019 and subsequently planted in grass seed from late 2019 to present. The second field was cropped with sweet corn in 2019 and snap beans in 2020 and 2021, with the soil bare over winter. The third field was cropped with sweet corn in 2019, wheat in 2020, and sweet corn in 2021, with the soil bare and flooded over winter

			0
Year	Field 1	Field 2	Field 3
2019	Snap bean	Sweet corn	Sweet corn
2020	Grass seed	Snap bean	Spring wheat
2021	Grass seed	Snap bean	Sweet corn

Table 1. Rotation of crops in the three fields monitored during 2019-2021

We monitored soil temperature and soil moisture throughout the growing season from 2019 through 2021. Each field had two TDR-315 sensors installed at 6" below the soil surface. The probes were connected to data loggers located at recording stations within the fields, and set to take a reading every 30 minutes. Data were downloaded at regular intervals and used to describe overall field conditions throughout the season. Unfortunately, due to damaged and defective sensors, some data are missing, although replacement sensors were installed as problems were detected.

Comprehensive soil health testing results were accomplished for each field in 2020 and 2021. Physical, chemical, and biological soil characteristics were measured and some key indicators are reported in Table 2. Comparing the soil particle composition, we notice that Fields 1 and 2 are a similar mix of sand/silt/clay while Field 3 has significantly more clay, and due to both the clay levels as well as site location is likely to have increased periods of winter flooding and prolonged high soil moisture levels in the spring. The amount of potentially mineralizable nitrogen (PMN) was highly variable at the time of sampling and could be due to the effects from timing of sampling as well as the amount and quality of crop residue remaining near the soil surface. The final two soil tests listed for active carbon and respiration describe some aspects of microbial function in the soil. Active carbon is seen as a measure of readily available 'food' for microbes, whereas respiration reports the amount of CO₂ evolved from the soil in 24 hours which may indicate the size of the microbial population. We would expect a positive relationship between high active carbon, soil respiration and soils that have low disease (indicating perhaps a "disease-suppressive-soil").

Field	рН	Sand/Silt/Clay	Potentially Mineralizable Nitrogen (PMN)	Active Carbon	Respiration 24 hours
		(%)	(ppm NO3-N at sample)	(ppm)	(μg CO2-C/g dry soil)
Field 1	5.5	32/48/20	14	514	54
Field 2	6.3	38/40/22	16	234	21

 Table 2. Soil health testing results

Field 3	6.5	18/58/24	40	321	37
---------	-----	----------	----	-----	----

Fusarium population levels in fields were determined in representative soil samples collected approximately every two weeks during the summer cropping months, and monthly thereafter (except for January-February 2020 and November-December 2021 after sensor stations were removed). Twenty 12-inch soil cores were collected in a systematic manner across each of four blocks in each field. Soil cores collected within each block were combined, bagged and returned to the lab. Soil samples were airdried until the soil was dry enough to sieve. Three 10-gram subsamples were removed from each composite block soil collection for each field on each sampling date. Soil subsamples were evaluated for levels of *Fusarium* species by plating serial dilutions onto a *Fusarium*-selective medium. Two additional 10-gram subsamples per block for each date were oven-dried in tins placed at 100°C for 48 hours in order to determine the soil dry weights used for calculating the number of *Fusarium* colony forming units per gram of oven-dried soil. Processing and data collection are still under way for the rest of the 2021 sampling that occurred through October 2021.

We have included the colony forming units recovered from dilutions of 10⁻³ (Table 3) and 10⁻⁴ (Table 4) because means of the 10⁻³ dilutions have lower variance among the sample dates for the respective fields, but 10⁻⁴ dilutions' counts are more precise measurements of the higher levels of *Fusarium* CFUs in the soil samples. *Fusarium* numbers were very high overall (Table 3 and 4), especially in field #3 that underwent flooding conditions. Typically, *Fusarium* colony forming units per gram of oven-dried soil of bulk soil samples associated with diseased and disease-free crop fields are generally <10,000 and 2,000, respectively. The high numbers of *Fusarium* CFUs could explain the relatively severe disease that we observed in both sweet corn and snap bean during the 2019 growing season and in the subsequent crops rotated in 2020 and 2021.

Date	Field 1: Snap bean-	Field 2: Sweet corn	
sampled	2019/grass seed	2019/snap bean 2020 &	Field 3: Sweet corn 2019/spring
	2020	2021	wheat 2020/sweet corn 2021
11-Jul-19	34,503	68,437	228,125
25-Jul-19	60,597	49,568	237,195
8-Aug-19	65,861	66,486	226,837
22-Aug-19	76,385	89,381	181,899
5-Sep-19	-	98,240	-
19-Sep-19	141,493	85,799	239,748
3-Oct-19	-	95,588	flooded
3-Nov-19	174,556	111,411	253,846
5-Dec-19	131,765	99,410	175,000
18-Mar-20	91,159	67,890	228,667
20-Apr-20	131,579	125,444	227,653
18-May-20	54,294	133,750	18,018
25-Jun-20	46,687	77,295	124,374
8-Jul-20	98,281	42,388	179,532
23-Jul-20	79,508	75,942	175,275
19-Aug-20	150,999	56,372	164,354
3-Sep-20	127,108	57,787	93,333
24-Sep-20	82,477	45,846	131,502
22-Oct-20	59,327	22,222	134773
19-Nov-20	75,806	27,052	flooded
17-Dec-20	68,554	55,490	flooded
25-Jan-21	111,940	59,733	flooded
15-Feb-21	97,540	55,474	flooded
18-Mar-21	163,540	78,706	90,556

Table 3. The number of *Fusarium* colonies that were obtained in 10^{-3} serial dilutions of soil samples collected on each date

Date	Field 1: Snap bean-	Field 2: Sweet corn	
sampled	2019/grass seed	2019/snap bean 2020 &	Field 3: Sweet corn 2019/spring
	2020	2021	wheat 2020/sweet corn 2021
11-Jul-19	76,023	138,643	640,625
25-Jul-19	125,373	103,746	378,049
8-Aug-19	87,613	97,297	396,166
22-Aug-19	67,055	91,445	183,976
5-Sep-19	-	93,842	-
19-Sep-19	250,746	106,509	318,612
3-Oct-19	-	91,176	flooded
3-Nov-19	301,775	156,156	376,572
5-Dec-19	164,706	162,242	224,359
18-Mar-20	146,341	51,988	403,333
20-Apr-20	154,971	136,095	450,161
18-May-20	95,092	250,000	180,180
25-Jun-20	78,313	141,908	250,250
8-Jul-20	137,536	62,687	292,398
23-Jul-20	105,011	95,652	219,780
19-Aug-20	229,028	47,976	193,197
3-Sep-20	160,830	114,755	152,381
24-Sep-20	132,931	55,385	264,943
22-Oct-20	73,394	15,432	181,425
19-Nov-20	84,677	30,395	flooded
17-Dec-20	89,419	83,086	flooded
25-Jan-21	143,284	86,181	flooded
15-Feb-21	115,774	67,153	flooded
18-Mar-21	276,106	107,817	163,889

Table 4. The number of *Fusarium* colonies that were obtained in 10⁻⁴ serial dilutions of soil samples collected on each date

Objective 2. Evaluate *Fusarium* disease incidence and severity of crops in monitored sweet corn and snap bean fields.

Fusarium rot of the roots of wheat, grass seed, and snap bean plants was present in the respective fields that were monitored during 2019-2021. Sweet corn exhibited a severe crown and stalk node rot rather than root rot, as was expected. Snap bean plants exhibited generally high levels of root rot and virtually all plants sampled had lesions on the lower stem before harvest. Rot of the adventitious root system of wheat and grass for seed was severe before harvest.

Ten plants were carefully dug from each block (40 plants per field) from each of the monitored fields on each date of plant sampling. Plants were returned to the OSU campus where soil was washed from root balls in the laboratory. The incidence of rot and percentage of the affected underground portion of each plant with rot were determined in visual assessments conducted by Ocamb.

The grass seed plants that were planted in Field 1 (Table 5) following a snap bean crop exhibited severe root rot by the latter half of June in 2020. Samples were extremely difficult to collect in 2021 due to dry soil conditions but grass plants sampled in July had a similar level of severe root rot as was found during the prior season. The snap bean plants that were planted in Field 2 (Table 6) following the 2019 sweet corn crop exhibited root rot long before flowering in 2020; plants had 2 to 3 trifoliate leaves by 22 Jul and flower buds were developing by 5 Aug. Snap bean plants sampled in 2021 had similar levels of root rot severity and incidence of lower stem lesions as compared to the previous season. The sweet corn plants that were planted in Field 3 (Table 7) following the sweet corn-wheat rotation had the typical less severe rot of the adventitious roots, but exhibited a very high incidence of crown rot by late July. By the next sampling date two weeks later, the decay of the stalk nodes had progressed well up the stalk, averaging greater than three stalk nodes above the soil line. The take home is that sweet corn, snap bean, grass grown for seed crops, and spring wheat all show high levels of root and crown disease due to *Fusarium* spp. throughout the three years of investigations, reinforcing the findings of extremely high levels of soilborne *Fusarium* species in the three fields monitored.

Date	Root rot (%) of snap bean plants
11-Jul-19	51
25-Jul-19	60
8-Aug-19	52
Date	Root rot (%) of grass seed plants
Date 24-Jun-20	Root rot (%) of grass seed plants 62

Table E Field 1	l dicaaca ratingc	in 2010 (cn-	n haan) and	2020-2021(grass se	~d)
I dole 5. Field 1	l uisease ratilies	III ZUTA (2019	id dealli allu	2020-202118192226	eur

	Adventitious corn	Mean # stalk nodes	% incidence
Date	roots rot (%)	with rot	of crown rot
11-Jul-19	0.4	-	98
25-Jul-19	4.1	0.2	95
8-Aug-19	10.9	2.5	95
22-Aug-19	15.6	2.7	100
5-Sep-19	8.9	2.6	100
19-Sep-19	17.3	2.6	98
3-Oct-19	22.6	2.6	100
	Root rot (%) of snap	Incidence of lesions on	
Date	bean plants	stem base	
8-Jul-20	47	75	
22-Jul-20	63	98	
5-Aug-20	63	98	
28-Jul-21	54	43	
9-Aug-21	90	100	

Table 6. Field 2 disease ratings in 2019 (sweet corn) and 2020-2021 (snap bean)

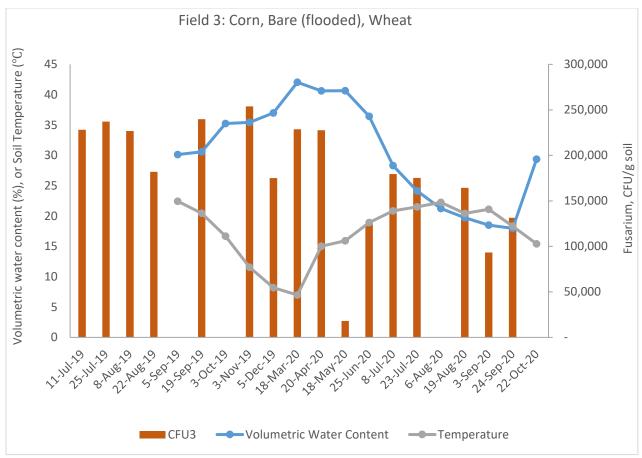
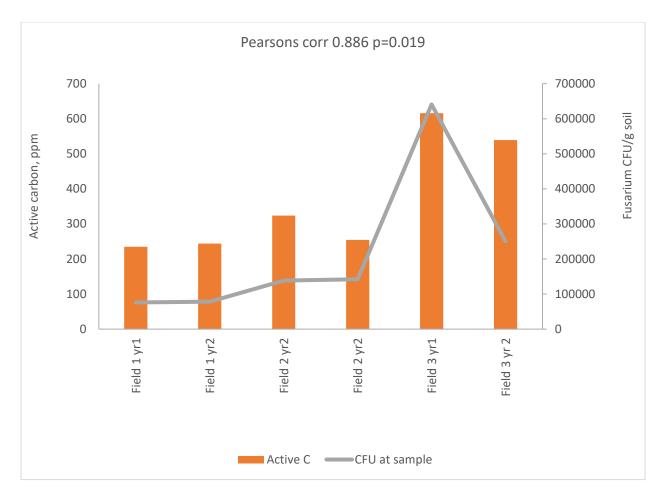

	Adventitious of	corn	Mean	# stalk nodes	% incidence of
Date	roots rot (%)		with ro	ot	crown rot
25-Jun-19	4		-		100
11-Jul-19	5		2.3		100
25-Jul-19	4		3.5		100
8-Aug-19	9		3.9		100
22-Aug-19	24		3.4		100
Date	Primary root rot (%) of wheat	Ove wheat rot	t root	Incidence of rot on wheat mesocotyl	Mean % mesocotyl with rot
24-Jun-20	17	11		23	-
8-Jul-20	94	56		100	64
Date	Adventitious o roots rot (%)	corn	Mean with ro	# stalk nodes ot	% incidence of crown rot
28-Jul-21	2.5			-	100
9-Aug-21	11			3.6	100

Table 7. Field 3 disease ratings in 2019 (sweet corn), 2020 (spring wheat), and 2021 (sweet corn)

Accomplishments:


As provided above, we were successfully able to both evaluate soil conditions (temperature and moisture) as predictors of *Fusarium* levels in the soil and also valuate *Fusarium* disease incidence and severity of crops in monitored sweet corn and snap bean fields. We continue to analyze the very large data set to explore these relationships further. An example of this continuing work is below and focuses on Field 3.

We are looking at different soil conditions such as minimum temperature and average temperature and moisture between sample dates to see if there this a correlation between any of these variables and the response we observed in both *Fusarium* CFU number and visible disease in the plant samples (Figure 1).

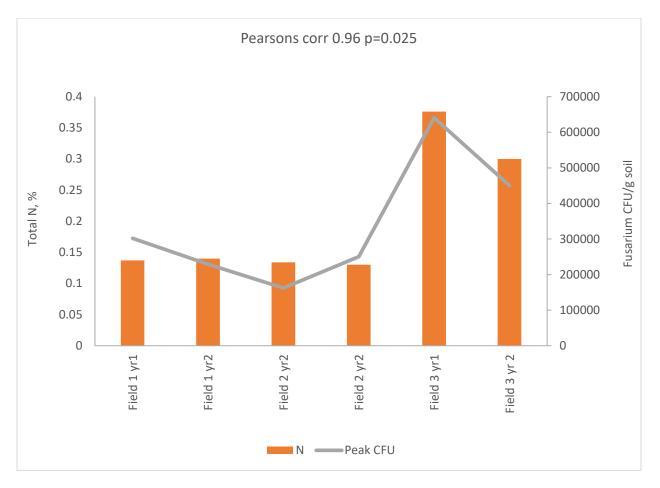


Figure 1. Soil temperature and moisture monthly averages as compared with soil *Fusarium* CFU counts for Field 3. Here we notice there appears to be a lag in decreased CFU counts following the minimum soil temperatures (March 18th observation).

Taking a similar approach, we are comparing the soil health indicators with disease measures. Two of the most responsive soil health indicators thus far have been active carbon (Figure 2) and total soil nitrogen (Figure 3). Across all monitored fields, the amount of active carbon and the total soil nitrogen percentage were both positively correlated with soilborne levels of *Fusarium*. While it is very early to make any conclusions, we continue to look at these indicators across several other fields and sample years to see if this trend remains, and if so, what might cause this response. This area of research can be very impactful for management strategies in the future.

Figure 2. Active carbon averages as compared with soil *Fusarium* CFU counts for all three fields. Here we notice a positive correlation with the active carbon at sampling (early spring) with the *Fusarium* CFU at the time of soil health sampling.

Figure 3. Total soil N percent averages as compared with soil *Fusarium* CFU counts for all three fields. Here we notice a positive correlation with percent nitrogen at sampling (early spring) with the *Fusarium* CFU at the time of soil health sampling.

<u>Impacts:</u> We anticipate that as data analysis progresses, and in coordination with data collected in similar studies within the specialty seed industry, we will identify potential conditions under which *Fusarium* populations will be higher and the potential risk for disease will be greater, posing an increased likelihood of crop loss. In the short term, we are preparing individualized reports for grower-cooperators with crop health observations and soil/soilborne descriptive data similar to that shared here.

This project has been presented at national conferences that brings awareness to the management challenges and fosters connection to further collaboration for a broader research effort to address the problem. In the longer term, these results will aid growers and field agronomists to adapt crop rotation, irrigation scheduling, and crop disease scouting intervals as needed to minimize crop losses.

<u>Relation to Other Research</u>: Both Buckland and Ocamb work across multiple industries and crop groups that can suffer losses to *Fusarium* and other soilborne pathogens. Often, growers that struggle with crop loss in processed vegetables also grow other crops susceptible to *Fusarium* disease losses and often struggle with other soilborne diseases. Therefore, we have recruited support from the Specialty Seed Growers of Western Oregon to monitor additional fields and are also actively working to secure federal grant funding to complete a replicated field trial that would test the impacts of soil health management

strategies to mitigate soilborne disease presence (*Fusarium* and other pathogens). We are also actively working other researchers and growers to examine cropping system inputs such as tillage and crop rotation that might also impact soilborne disease incidence and severity. Our work will continue to look for funding opportunities to examine at a cropping systems level these interactions.

<u>Acknowledgements:</u> We would like to thank the Oregon Processing Vegetable commission for the support they provided as well as our three cooperating growers who allowed us to install equipment and sample throughout their fields. Also many thanks to Tim Flodquist, Mariah Dietrich, Taylor A. Bates, Alexandria S. Montgomery, Darby D. Bergl, Anna Ehlers, and Ann Rasmussen for their assistance with collection of weather monitoring data as well as plant and soil samples along with conducting the soil dilution series in 2021.

OPVC CONTINUING PROJECT REPORT: PROJECT YEAR: 2021

1. OPVC REPORT COVER PAGE (maximum 2 pages)

OPVC Project Number:

Project Title: Green Bean Breeding and Evaluation

PI: James R. Myers Organization: Oregon State University Telephone: 541-737-3083 Email: james.myers@oregonstate.edu Address: ALS 4017, Department of Horticulture

City/State/Zip: Corvallis, OR 97331

Co-PI: Zak Wiegand

Telephone: 541-737-6496 Email: <u>Zak.Wiegand@oregonstate.edu</u> Address: Wiegand Hall, Department of Food Science and Technology

Total project request (all years):

Year 1: \$31,070 breeding \$8,515 processing \$39,584 total

Contributions from the OSU breeding program Year 1: **\$20,163**

Other funding sources: None

2. EXECUTIVE SUMMARY (ABSTRACT): Oregon is a major producer of processed green beans, and cultivars are needed that are adapted to western Oregon. The types that have traditionally been used are the bush blue lake (BBL) green beans with high yields, excellent processing quality. On the other hand, they need improvement in plant architecture, and disease resistance (especially to white mold and root rots). Further complicating the breeding process, BBL types are genetically isolated from other green beans which it means that it is difficult to introgress traits from other types of green beans. The primary objective of the OSU green bean breeding program is to develop high yielding and high quality BBL green beans with high levels of white mold resistance. In 2021, a yield and processing trial of 23 OSU experimental advanced lines and six check cultivars was conducted. Many of the experimental lines had high yields and good quality in 2020, but to narrow the field, they were retested using the greenhouse based straw test for white mold resistance. A second trial with 28 entries from commercial seed companies in addition to three checks and two OSU experimental lines were also grown and evaluated. Several commercial entries had BBL quality and high yields. In the greenhouse, 959 experimental lines were evaluated for white mold reaction using the straw test. Five-hundred eighty-nine lines (61%) had scores equal to four or less and were retained in the program; the remainder were dropped. A replicated trial with 27 OSU advanced experimental lines was planted in a white mold disease nursery at the Vegetable Research Farm. Disease incidence and severity was low for white mold, but we did see a significant infection with gray mold and incidence and severity scores were obtained for both diseases.

3. FULL REPORT

3.a. BACKGROUND Green beans grown for processing in the Willamette Valley contribute significantly to the Oregon state economy each year (\$20.6 million in 2020). The industry produces a high-quality product with the unique flavor, color, and appearance based on the Bush Blue Lake (BBL) class of green beans. From genetic studies we have conducted, Blue Lake green beans form a distinct gene pool compared to other snap beans. Furthermore, the growing environment in Western Oregon is unlike any other green bean production area in the United States, and the OSU BBL cultivars have been bred for this environment for more than half a century. Developing productive varieties that are adapted to Western Oregon requires a dedicated breeding effort. BBL green beans have higher yield potential than those bred for the Midwestern U.S. A factor contributing to BBL pod quality is that these types typically have very low fiber pods. A tradeoff of the higher yields is that BBL beans allocate fewer resources to vegetative growth, which can compromise plant architecture and lead to lodging when pod loads are heavy. Lodging and low fiber content contributes to susceptibility to white and gray mold by BBL types.

White mold disease caused by *Sclerotinia sclerotiorum* is a pathogen of more than 400 species of plants including snap bean. Not only does it have the potential to cause heavy yield loss, but it can adversely affect pod quality and cause rejection of whole lots at the processing plant if moldy pods in the lot exceeds 3%. The growing environment in western Oregon is favorable to disease development, especially during cooler and moist conditions that may occur anytime during the growing season. The disease is mainly controlled by fungicide application, which requires precise timing and can be expensive especially if two sprays are used. Biological control also has potential but is expensive has not been implemented on a wide scale. If genetic variation exists, resistance is usually the most efficient means of achieving control of any disease, as the costs associated with control of that disease are internalized in the cost of the seed. White mold disease resistance is no exception to this principle.

While partial resistance is known, there are challenges to successful deployment. First, the genetic factors conditioning resistance generally have small individual effect and are strongly influenced by the environment (in this respect, white mold resistance shows many similarities to the genetic control of yield). A number of resistance factors are known but these are in different varieties, many of which are not snap beans. Our work supported by the USDA National Sclerotinia Initiative involving meta-QTL analysis revealed that there are 17 factors contributing to resistance distributed throughout the bean genome. More recently, we conducted a genome wide association study (GWAS) and identified 39 regions of the bean genome that harbor resistance. These resistance factors can be combined in the same variety which is best facilitated by the use of molecular markers for selection. In addition to physiological resistance, avoidance traits such as maturity, growth habit, lodging, flower number and retention, and canopy porosity influence the overall level of resistance. This requires an approach to plant breeding that emphasizes field scale breeding using replicated plots with marker assisted selection.

Our program has focused on using several resistance sources. These can be placed into two groups: resistance factors derived from common bean and resistance factors from the related species, scarlet runner bean. Of the common bean germplasm sources, NY 6020 is a snap bean developed by the snap bean breeding program at Cornell University. It has been well characterized genetically and we know that it has two relatively large resistance factors that have molecular markers for selection. This has been the primary focus of our white mold breeding program. Recently, we have screened additional snap bean lines and have discovered several which have useful levels of resistance. We are only beginning to understand what resistance factors they possess, and have begun crossing to these to introgress from these resistance sources.

From the scarlet runner derived materials, we have several snap bean germplasm lines that have significant levels of resistance. WMG904-20-3 resistance was recently characterized in a recombinant inbred population where we found a major factor for resistance residing on common bean linkage group

8. We are using these newly identified resistance sources in our breeding program. These include 'Unidor', 'Cornell 501' and 'Idaho Refugee'. We have advanced lines with the latter two in evaluation and our work to incorporate resistance from Unidor is currently at earlier generations. These need further evaluation for resistance, yield and quality. Additional crosses are in earlier generations, and need to be moved along the pipeline.

While the main focus of the program is on improving white mold resistance of the BBL types, other traits including yield, maturity, growth habit, pod size, shape and color, and processing characteristics need to be maintained or improved.

3.b OBJECTIVES

- 1. Breed improved Bush Blue Lake green bean varieties with:
 - a. White mold resistance
 - b. Improved plant architecture
 - c. High economic yield
 - d. Improved pod quality (including straightness, color, smoothness, texture, flavor and quality retention, and delayed seed size development)
 - e. Tolerance to abiotic stresses

3.c. SIGNIFICANT FINDINGS

- A yield trial of 23 OSU experimental lines and six checks revealed many that showed high yields and good quality. These lines had also performed well in 2020 yield and processing trials, and in white mold trials in 2019.
- Six experimental lines again had high yields and good quality and are promising lines to consider for release.
- A trial with 28 commercial entries, three checks and two OSU experimental lines was also evaluated for yield, quality and pods were frozen for processing evaluation. One commercial entry was a wax bean, the remainder were green beans of different types. Several lines showed BBL characteristics and out yielded OSU5630.
- We experienced a second year of little white mold disease in the field. Incidence was higher than in 2020 and in addition, there was significant incidence of gray mold.

3.d. METHODS

Breeding for White Mold Resistance: Because of the overriding need for white mold resistant snap bean cultivars, breeding for white mold resistance continues to be the primary objective of the breeding program.

The focus in 2021 was to evaluate advanced lines that are potentially resistant to white mold. We screened 989 experimental lines in intermediate generations and 30 advanced lines with the green-house-based straw test. In the field, we planted 27 advanced experimental lines along with two susceptible and two partially resistant check cultivars into a randomized complete block design with 3 reps for evaluating white mold reaction in the field. At flowering, the plots were given a short (30 min.) irrigation every evening to create conditions conducive to disease development.

Varietal Development: The program continued with crosses among elite lines and the best white mold resistant lines. Pedigree and single seed descent breeding methods were used to advance and select early generation materials. While the emphasis was on breeding for white mold resistance, we also continued to incorporate improved plant architecture and conduct yield and processing trials of the best

lines. We placed 9 of the 23 lines identified in 2019 and 2020 as having high yields, white mold resistance and acceptable quality, along with two check cultivars in a replicated yield trial to evaluate yield and quality. An additional 20 advanced lines were included in this trial along with six check cultivars. The yield and quality trial consisted of three reps arranged in a randomized complete block design and planted into 20 ft. single row plots with 30" row spacing. The trial was planted May 15. Five-foot sections of each plot were harvested up to three times to obtain data on graded yield and raw product evaluation. Lines were also evaluated for growth habit and graded samples were evaluated for pod smoothness, straightness, seed to pod ratio, and color. Those that met expectations in the raw product evaluation were frozen for evaluation of the processed product.

We also conducted a second trial of commercial snap bean lines and cultivars. It was planted June 15 in a similar manner to the first trial, except six reps were planted, of which four were harvested for evaluation. Otherwise the harvest and evaluation procedures were the same.

A sample display was conducted Dec. 1 at the OSU Pilot Plant where panelists evaluated snap bean samples for quality attributes. Due to Covid 19 restrictions, access to the evaluation was limited to OSU faculty, staff and students. Data collected from panelists is being compiled and analyzed. We plan to hold a sample display in late winter 2021 at Oregon Processed Vegetable Growers meeting where growers, processors and seedsmen will be invited to take part.

Advanced Lines: Seed increase, roguing, and sub-line maintenance of the historical releases continued. Seed quality of OSU advanced lines will be quantified using germination damage tests that are standard in the industry. In short, seeds are dropped onto a steel plate, and then subjected to cold (10°C) germination tests.

3.e. RESULTS & DISCUSSION

Varietal Development: In 2021, we grew 877 plots in the early generation nursery. Plots consisted of populations and lines at various stages of inbreeding. In the early generation nurseries, there were 250 advanced lines, the remainder being populations at various stages of advance.

Yield Trials: For the first trial (Table 1), most experimental entries fell into the 5 to 6 (full) sieve classes (50-60% 1-4 sieve) with two lines judged to be more of a 4 or 4-5 sieve bean (Table 2). Maturities ranges from 76 to 83 days, reflecting a cool spring despite the heat dome of early June. This high temperature event came before lines in the trial were in flower, so had negligible effect on yields, although it might have contributed to the delay in maturities. OR5630 was moderately high yielding with 9.9 T/A (10.5 T/A adjusted) with three experimental lines with yields significantly higher than the check. Our 4-sieve check, Savanah had a yield of 7.8 T/A which was significantly lower than OSU5630. We calculated pod filling efficiency, which is yield divided by days to harvest and gives an estimate of rate of gain in yield per day. It essentially paralleled yield *per se* supporting the idea that highest yielding genotypes are those with the most rapid photosynthate accumulation.

None of the experimental lines had oval pods and only one had a tendency towards heart-shaped pod cross-section. Pods of three lines appeared to be slightly lighter green in color compared to OSU5630, but all pods will need to be evaluated after processing (Table 3). Seed development by sieve size and harvest date is shown in table 4. Most lines showed typical BBL full seed development by the time of harvest. Quality and flavor data from the sample display is shown in table 5. This was a non-blind evaluation so there may be some bias to evaluations as shown by the high score for OSU5630 checks. Among experimental lines, OSU7248 OSU7273 and OSU7290 received relatively high ratings.

Commercial Green Bean Trial: This trial had 28 commercial entries, three check cultivars and two OSU experimental full sieve types (Table 6). Six commercial lines submitted for trial were 5- or full-sieve, but the other ranged from extra fine (2 sieve) types to whole bean (3 & 4 sieve) types. One entry was a wax bean while the remainder were green beans. Overall yields were similar to slightly lower in this trial

compared to the first in the season, ranging from about 4.7 – 11.5 T/A at prime harvest (Table 7). We found in this trial that we were often surprised by how rapidly the beans were maturity – perhaps due to high temperatures moving the trial along. OSU 5630 yielded 9.8 T/A with no other lines showing significantly higher yields. Among the highest yielding commercial lines were the RR lines from Pure Line Seeds (Table 8). Raw product quality for most was acceptable although several had pod color too light to blend with BBL types (Table 9). Seed size development notes during successive harvests are in table 10.

White Mold Trial: In the winter 2021 greenhouse, 959 experimental lines were evaluated for white mold reaction using the straw test (Figure 1). Five-hundred eighty-nine lines (61%) had scores equal to four or less and were retained in the program; the remainder were dropped. A field trial of advanced lines planted mid-summer was timed to mature during the fall when temperatures moderate and leaf wetness periods increase. In the past two decades, we have consistently achieved conditions conducive to disease development, whereas other times during the season may be hit and miss. In 2020, trial maturation coincided with the extreme dry conditions that led to wildfires and heavy smoke in the valley, and no white mold symptoms developed. In 2021, fall conditions were again warm and dry, but transitioned to cool and rainy, which allowed some disease development, but not as fully as desired. We conducted one field trial evaluation of advanced experimental lines and obtained some data on both white mold and gray mold incidence (Table 11). Over the years, we have observed that white mold may have a suppressive effect on gray mold, because in trials where white mold incidence is low, there is often a higher than normal incidence of gray mold. In addition to the field screening, we also tested advance lines with the straw test in the winter greenhouse to obtain severity scores for white mold (Table 12). Of the six advanced lines of greatest interest, three showed moderately high levels of resistance (two not significantly different from NY6020-4) and three appeared to be more similar to the susceptible check.

Advanced lines for release: Table 13 summarizes three years of yield data along with disease reaction for nine advanced lines that show the most promise for release. These have all been shown to have acceptable quality. OSU7318 is a consistently high yielding line with excellent quality, but while it appears to be more resistant to white mold, is among the worst performers for this group of advanced lines. OSU7199 has a high average yield, but performance has been variable across years. It does, however, have very good white mold resistance. Another line of interest is OSU7066 with relative high yield and very good white mold reaction. We are currently scaling up production of these and other lines for potential release to seed companies.

1) Breeding (Myers)	
Salaries and benefits	
Faculty Research Assistant	\$17,462
OPE @ 75.4%	\$13,107
Wages and benefits	
Student Wages	\$0
OPE @10%	\$0
Supplies	\$500
Travel	\$0
Land and greenhouse rental	\$0
Total	\$31,070

4. BUDGET DETAILS

2) Processing Evaluation (Wiegand)	
Salaries and benefits	
Faculty Research Assistant	\$3,242
OPE @ 61.59%	\$1,997
Wages and benefits	
Student wages	\$1,780
OPE @ 10%	\$196
Supplies	\$1,300
Total	\$8,515
Grand Total	\$39,584

Contributions of the OSU breeding program	
Student Wages	\$9,500
OPE @ 10%	\$950
Supplies	\$500
Travel	\$93
Land and greenhouse rental	\$9,120
Total	\$20,163

BUDGET NARRATIVE

Request to OPVC:

Salary and OPE is requested for a full-time faculty research assistant who will commit 40% FTE to green bean breeding. OPE is 71.3%. A Food Science and Technology faculty research assistant will commit approximately 0.05 FTE to processing of entries from green bean trials; the remainder of salary to come from other sources. Undergraduate student wages of \$1,780 are requested for the processing program with 10% OPE. \$500 is requested for materials and supplies for field work (includes stakes, tags, envelopes, paper bags, etc.)

Contributions of the Vegetable Breeding Program:

Undergraduate student wages of \$9,120 are estimated for the breeding program with 10% OPE. An additional \$500 is required to cover field and greenhouse materials and supplies expenses (fertilizer, pots, labels, stakes, tags, crossing supplies). To cover transport of samples from the farm to campus for processing, \$93 is estimated. Land use rental at the OSU Vegetable Research Farm consists of five acres at \$1,390 per acre and greenhouse rental of 2,123 ft² at \$1.55 per square foot.

Table 1. Experimental green bean lines and check cultivarsgrown in a yield and processing evaluation trial at theOSU Vegetable Research Farm in 2021. Highlighted linesare those of particular interest for release.

			Predomi-
No.	Line	Pedigree	nant sieve size
1	Cornell501	(check)	5
2	NY6020-4	(check)	5
3	OSU5630	(check)	5-6
4	Sahara	(check)	4
5	Pierroton	(check)	2
6	Redon	(check)	2
7	OSU7066	5630/Cornell 501	6
8	OSU7069	5630/Cornell 501	6
9	OSU7152	5630/6771	6
10	OSU7187	6443/6772	6
11	OSU7199	6792/6443	6
12	OSU7208	6792/6443	6
13	OSU7221	6794/5630	6
14	OSU7226	6794/5630	5-6
15	OSU7248	6443/6794	6
16	OSU7261	ID Refugee/6443	5
17	OSU7273	5630/6771	6
18	OSU7281	5630/6771	6
19	OSU7290	5630/6771	6
20	OSU7292	5630/6771	4-5
21	OSU7300	5630/6771	6
22	OSU7305	5630/6771	5
23	OSU7306	5630/6771	5-6
24	OSU7318	5630/6771	6
25	OSU7322	5630/6792	5
26	OSU7340	6792/5630	4
27	OSU7341	6792/5630	6
28	OSU7347	6793/5630	5
29	OSU7048	Banga/5600	2-3

	0						U		Sieve	categor	y (%) ^y		
Entry	Date pro- cessed	Harvest (DAP)	Plant stand (No./A)	Ton/A	Ad- justed Ton/A	Pod filling efficiency (lb/A/da)	% 1-4	1	2	3	4	5	6
OSU5630	х	76	193,600	9.9	10.5	261.4	55.6	3.1	15.4	29.0	29.0	40.7	3.7
OSU5630		79					40.9	1.0	8.9	27.6	27.6	49.3	9.9
Sahara	х	76	164,241	7.8	7.8	204.8	82.0	3.1	16.4	56.3	56.3	18.0	0.0
Pierroton	х	79	157,135	5.9	5.9	148.5	100.0	29.8	70.2	0.0	0.0	0.0	0.0
Redon	х	79	192,313	5.6	5.6	142.6	100.0	22.8	69.6	7.6	0.0	0.0	0.0
OSU7066	х	79	190,047	11.2	10.5	283.8	43.5	2.3	5.6	11.3	24.3	38.4	18.1
OSU7069	х	76	164,560	8.2	9.8	217.0	68.7	5.2	11.2	18.7	33.6	28.4	3.0
OSU7152	х	76	179,399	5.6	6.0	148.3	56.7	4.4	7.8	12.2	32.2	37.8	5.6
OSU7199	х	83	166,177	9.9	8.5	239.3	35.3	2.6	5.2	9.2	18.3	30.7	34.0
OSU7208	х	83	192,632	8.4	8.7	201.5	54.5	4.9	7.7	14.0	28.0	30.1	15.4
OSU7221	х	81	186,175	8.0	6.9	196.5	36.9	3.1	6.2	10.8	16.9	33.8	29.2
OSU7226	х	79	179 <i>,</i> 399	8.2	8.1	207.3	49.3	2.9	6.5	12.3	27.5	42.0	8.7
OSU7248	х	81	165,209	6.7	7.7	166.3	64.9	9.0	18.0	17.1	20.7	22.5	12.6
OSU7261	х	80	176 <i>,</i> 495	10.3	7.9	257.0	26.9	1.2	2.4	5.4	18.0	56.9	16.2
OSU7273	х	79	171 <i>,</i> 985	13.1	12.0	330.8	42.2	1.8	4.1	10.1	26.1	49.5	8.3
OSU7281	х	79	175,857	10.6	8.2	269.1	27.5	1.2	4.1	8.2	14.0	46.8	25.7
OSU7290	х	80	188,111	13.3	11.4	332.5	35.7	1.5	3.5	6.5	24.1	54.3	10.1
OSU7292	х	76	188,441	7.6	7.7	198.7	52.0	4.9	6.5	9.8	30.9	43.9	4.1
OSU7300		76					71.4	8.7	11.1	16.7	34.9	28.6	0.0
OSU7300	х	79	189,728	10.0	9.5	252.9	44.7	2.5	5.0	11.8	25.5	46.0	9.3
OSU7305	х	79	190,377	12.7	12.8	320.5	51.5	1.9	5.3	13.1	31.1	41.7	6.8
OSU7306	Х	76	190,047	10.2	12.0	267.5	67.8	10.0	8.9	15.0	33.9	30.0	2.2
OSU7318	х	79	177,793	12.0	11.0	304.4	41.7	2.0	3.9	8.8	27.0	52.0	6.4

Table 2. Yield, yield parameters and sieve size categories for OSU experimental green bean lines grown in a trial planted May 15 at the OSU Vegetable Research Farm in 2021.² Color coding: red indicates large while blue indicates relatively small numbers.

									Sieve	category	y (%) ^y		
Entry	Date pro- cessed	Harvest (DAP)	Plant stand (No./A)	Ton/A	Ad- justed Ton/A	Pod filling efficiency (lb/A/da)	% 1-4	1	2	3	4	5	6
OSU7318		80					36.1	2.3	3.2	5.9	24.7	57.5	6.4
OSU7322	х	80	180,048	10.9	10.4	271.5	45.4	2.2	5.4	10.8	27.0	48.6	5.9
OSU7340	х	81	193,600	8.8	8.8	218.0	81.7	7.0	9.9	22.5	42.3	18.3	0.0
OSU7341	х	79	189,728	10.6	8.1	267.6	26.6	0.6	2.3	6.4	17.3	45.7	27.7
OSU7347	х	80	184,569	9.5	8.8	238.1	42.3	2.6	6.4	9.6	23.7	48.7	9.0
OSU7048	х	80	152,295	6.4	6.4	161.2	100.0	12.6	56.8	27.0	3.6	0.0	0.0
LSD 0.05			26,951	2.5	2.4	63.8							

²Mean of 3 replications; subplots of 5' were harvested from 18' plots in rows 30 in. apart. ^yTons/Acre adjusted to 50% 1-4 sieve for full and 5 sieve beans; yields for smaller sieve lines were not adjusted. ^yPercent calculated as % of total of 1-6 sieve beans.

Table 3. Pod quality parameters, flavor and notes on green bean lines and cultivars grown in a trial planted May 15 at the OSU Vegetable Research Farm in 2021.

				Р	od				Flavor ^z	2	
Entry	Harvest (DAP)	Mainsieve size	Length (cm)	Straightness ^z	Cross-section shape ^v	Smoothness ²	Color*	Sweetness	Astringency	Perfuminess	Notes ^w
OSU5630	76	5-6	15	5	r	5	5	7	7	1	Some blanks & polywogs oval mix
OSU5630	79										Very seedy 6 sv but other svs good quality
Sahara	76	4	14	6	r	9	7	3	7	1	Some blanks & polywogs;
Pierroton	79	2	12	9	r	7	4	7	9	3	Has held up well in the heat
Redon	79	2	14	7	r	9	3	7	9	3	
OSU7048	80	2-3	11	9	r	7	6	7	9	3	Nice appearance and has held up well in the heat
OSU7066	79	6	17	5	r-cb	5	5	7	7	1	Flats in 3 & 4 sv
OSU7069	76	5	13	7	h-r	7	5	8	7	1	Medium length 5 sv; 6 sv very seedy
OSU7152	76	6	17	6	r-cb	7	7	7	7	1	Long attractive pods. Slow seed de- velopment
OSU7199	83	6	15	5	r	5	5	5	5	1	Seems to have a split in 6 sv - some w/ little seed dev., others w/ a lot; upright in the field but doesn't have the pods to drag it down
OSU7208	83	6	16	5	r	5	5	7	7	1	Easy picker, but low yield & late, split in 6 sv.
OSU7221	81	6	18	7	r	9	5	5	7	1	Extraordinarily long pods - up to 20 cm - too long for snippers? Probably a split set in this one

				P	od				Flavor ^z		
Entry	Harvest (DAP)	Mainsieve size	Length (cm)	Straightness ^z	Cross-section shape ^v	Smoothness ²	Color [×]	Sweetness	Astringency	Perfuminess	Notes ^w
OSU7226	79	5	14	5	r-cb	3	3	7	7	1	Short pods, low yield & light color - discard
OSU7248	81	6	13	5	r	5	5	7	7	1	Strong RC. This line is either very in- determinate or bad split set
OSU7261	80	5	14	7	r-cb	5	6	7	7	1	Short pods many w/ blanks, poly- wogs.
OSU7273	79	6	16	5	r	7	5	7	5	1	Some blanking
OSU7281	79	6	15	5	r-cb	5	5	7	9	1	Some blanking; could have been har- vested 7/30
OSU7290	80	6	15	7	r	7	5	7	9	1	Dark green interior gel; some blank- ing but otherwise of good quality
OSU7292	76	5-6	12	7	r-cb	3	4	5	5	1	Short bean that tends to become bumpy
OSU7300	76	5-6	15	6	r	7	5	7	5	1	Seems to be split set w/ 6 sv v seedy but 5 sv only moderately seedy
OSU7300	79										
OSU7305	79	6	15	5	r	7	5	7	7	1	Some blanking in 6 sv
OSU7306	76	6	15	5	h-r	7	5	7	7	1	Double split set in small sv & in 6 sv. 6 sv -ranges from mod - v seedy. Flat mix
OSU7318	79	5	17	5	r-cb	7	7	7	7	1	Unknown yield problem in 2nd rep. excellent quality even w/ low grade
OSU7318	80										Still good quality

				P	od				Flavor ^z		
Entry	Harvest (DAP)	Mainsieve size	Length (cm)	Straightness ^z	Cross-section shape ^v	Smoothness ^z	Color [×]	Sweetness	Astringency	Perfuminess	Notes ^w
OSU7322	80	6	14	5	r	5	3	7	7	1	Good quality bean but too light.
OSU7340	81	4	15	7	r-cb	7	5	9	7	1	Hard to pick & detaches in clusters. Hard to pull -strong roots w/ large & deep taproot. Long straight attractive pods
OSU7341	79	6	14	3	r	5	4	7	7	1	Short pods, variable color-lots of 2- tone pods, should have been har- vested 7/30
OSU7347	80	6	12	7	r-cb	7	6	7	7	1	Pods are short in this trial. Some blanking & polywogs

^zScale of 1 - 9 where 1 is least or worst and 9 is most or best. ^yScores based on a 1 - 9 scale with 9 darkest. Standard BBL color is rated as 5. ^xr = round, cb = creaseback, h = heart and o =oval. ^wAbbreviations: sv = sieve, dev = development, RC = reverse curve, v = very.

Table 4. Seed development in different sieve sizes on day of harvest for experimental and check snap bean lines grown in a trial planted May 15 at the OSU Vegetable Research Farm in 2021.

			Siev	e siz	e ^z		
	Harvest days after						
Entry	planting	6	5	4	3	2	1
OSU5630	76	8	6	4	2		
OSU5630	79	9	7	5	3		
Sahara	76		5	3	1		
Pierroton	79				5	3	1
Redon	79				5	3	1
OSU7048	80			9	5	3	2
OSU7066	79	7	6	3	2		
OSU7069	76	9	7	5	2		
OSU7152	76	6	4	2	2		
OSU7199	83	9-7	6	4	2		
OSU7208	83	7	5	3	1		
OSU7221	81	8	7	5	3		
OSU7226	79	8	7	5	3		
OSU7248	81	9	7	5	2		
OSU7261	80	8	7	5	2		
OSU7273	79	9	8	5	3		
OSU7281	79	8	6	4	2		
OSU7290	80	9	8	6	4		
OSU7292	76	7	5	3	1		
OSU7300	76	7	5	3	2		
OSU7300	79	7	7	5	2		
OSU7305	79	9	8	5	3		
OSU7306	76	7	5	3	2		
OSU7318	79	8	6	5	3		
OSU7318	80						
OSU7322	80	8	7	5	2		
OSU7340	81		8	7	5		
OSU7341	79	9	8	6	3		
OSU7347	80	8	7	5	3		

^zScale of 1 - 9 for seed development where 1 = none, 3 = beginning, 5 = moderate, 7 = becoming seedy & 9 = very seedy.

		Avera	age Score			% Cou	nt (Ove	erall)	
		Fla-	Sweet-	Over-	Worst				Best
Line	Color	vor	ness	all	(1)	2%	3%	4%	(5)
OSU5630	4.1	3.4	2.9	3.6	0%	13%	13%	75%	0%
Sahara	3.9	3.2	3.1	3.3	0%	19%	38%	44%	0%
Pierroton	3.8	2.9	2.4	3.0	0%	31%	25%	31%	0%
Redon	3.1	2.7	2.3	2.7	6%	38%	31%	19%	0%
OSU7066	4.0	3.4	3.1	3.4	0%	6%	38%	44%	0%
OSU7069	4.2	3.4	3.1	3.3	0%	13%	44%	25%	6%
OSU7152	4.0	3.2	3.5	3.2	0%	13%	44%	25%	0%
OSU7199	3.8	3.0	2.8	3.1	6%	13%	44%	25%	6%
OSU7208	3.5	2.9	2.8	3.0	13%	6%	50%	19%	6%
OSU7221	3.9	3.0	2.7	3.1	0%	25%	25%	38%	0%
OSU7226	3.4	3.0	2.7	3.1	6%	13%	25%	31%	0%
OSU7248	3.8	3.4	3.0	3.4	0%	0%	56%	19%	6%
OSU7261	4.2	3.4	2.9	3.2	0%	19%	56%	13%	13%
OSU7273	3.9	3.3	2.9	3.4	0%	0%	63%	25%	6%
OSU7281	3.8	3.1	2.8	3.1	6%	13%	38%	31%	0%
OSU7290	3.5	3.5	3.2	3.6	0%	6%	38%	38%	13%
OSU7292	3.7	3.5	3.0	3.3	0%	19%	25%	31%	6%
OSU7300	3.8	2.9	2.5	3.2	6%	13%	25%	38%	0%
OSU7305	3.6	3.2	2.6	3.2	0%	13%	44%	25%	0%
OSU7306	3.7	3.2	3.2	3.0	13%	13%	19%	38%	0%
OSU7318	4.4	2.9	2.9	3.2	0%	31%	13%	38%	6%
OSU7322	3.5	2.9	3.2	3.1	0%	31%	25%	13%	13%
OSU7340	3.5	2.6	2.2	2.5	13%	25%	38%	6%	0%
OSU7341	3.6	3.1	2.7	3.0	6%	25%	25%	25%	6%
OSU7347	4.4	3.6	3.0	3.5	0%	6%	25%	44%	0%
OSU7048	3.8	3.0	2.5	2.9	6%	25%	25%	31%	0%

 Table 5. Average scores for processed (frozen samples of the OSU green bean breeding lines evaluated in a sample display, Dec. 1 2021 at the OSU Pilot Plant.

No.	Entry	Source	Predominant sieve size
1	OSU5630	OSU/check	6
2	Sahara	HM/check	4-5
3	Crockett	HM/check	3
4	R201149	Syngenta	2-3
5	SB4734	Syngenta	4
6	SB4735	Syngenta	4-5
7	SB4739	Syngenta	4-5
8	SB4766	Syngenta	4-5
9	SB4794	Syngenta	3-4
10	SB4829	Syngenta	4
11	Pike	Syngenta	3-4
12	Outlaw	Syngenta	4
13	SV 1136GF	Semnis	5
14	SVGG 1312	Semnis	5
15	SVGV 2089	Semnis	4-5
16	SVGG 2097	Semnis	4
17	Competitor	Semnis	5-6
18	Affirmed	Semnis	3
19	BEX028	BSC	3
20	BSC897	BSC	3-4
21	Jackson	BSC	3-4
22	World Cup	BSC	4-5
23	Cosmos	BSC	4-5
24	RR 3005	PLS	6
25	RR 3006	PLS	4
26	RR 3009	PLS	6
27	RR 3011	PLS	4-5
28	RR 3015	PLS	5
29	GSVB17	Seneca	4-5
30	GVS B59	Seneca	4
31	GVSWB1	Seneca	4-5
32	OSU 7199	OSU	6
33	OSU 7347	OSU	5

Table 6. Commercial snap bean lines and checks grown in a yield trial at theOSU Vegetable Research Farm in 2021.

Table 7. Yield and maturity of commercial green bean lines in a yield trial planted June 15 at the OSU Vegetable Research Farm, Corvallis, 2021². Second picking for all entries was considered to be the prime harvest and was sent for processing.

Entry	Stand (no./A)	Days to harvest	T/A	Days to harvest	T/A	Days to harvest	T/A	Days to harvest	T/A	T/A (ad- justed) ^y
Entry Affirmed	166,738	63	8.8	65	8.3	67	9.5	65	8.3	8.3
BEX028	189,002	64	6.2	66	8.5 6.1	07	9.5	64	6.2	6.2
BEX028 BSC897	183,436	64	6.9	66	7.3			64	6.9	6.9
Competitor	183,450	59	0.9 9.1	62	7.5 11.5			62	0.9 11.5	9.6
Cosmos	188,276	62	9.1 6.5	64	6.8	66	7.5	62 64	6.8	5.2
Crockett	163,592	62	6.0	64	0.8 7.2	66	7.3 8.4	64	0.8 7.2	7.2
GSVB17	193,600	62	0.0 7.0	64	7.2 8.1	00	0.4	62	7.0	6.6
GVS B59	193,600	62	7.0 9.4	64 64	8.5			62	7.0 9.4	8.2
GVS B59 GVSWB1	193,358	63	9.4 5.2	65	8.5 5.3	67	6.1	63	9.4 5.2	5.2
	164,802					67 67				4.7
Jackson	182,710	63	4.7	65 65	4.7	67	6.3	63	4.7	5.0
OSU 7199	193,600	64 62	5.2	66 CF	8.5			64 62	5.2	7.9
OSU 7347	193,000	63	7.8	65	9.2	C A	0.1	63	7.8	9.8
OSU5630	191,004	62	9.8	63	9.6	64	9.1	62	9.8	9.8 7.7
Outlaw		63	7.1	65	7.7	67	7.6	65	7.7	7.1
Pike	165,528	62	5.8	64	7.1	66	8.9	64	7.1	4.7
R201149	190,696	62	4.7	64	5.5	66	5.8	62	4.7	
RR 3005	186,340	62	10.5					62	10.5	8.4
RR 3006	180,532	62	9.8	6.0		~ ~		62	9.8	8.6
RR 3009	176,418	59	7.4	62	10.5	64	12.0	62	10.5	11.6
RR 3011	185,856	59	11.2	62	13.1			59	11.2	11.2
RR 3015	176,660	62	10.8	64	10.2			62	10.8	11.6
SB4734	166,980	62	7.3	64	7.7			62	7.3	5.4
SB4735	193,600	62	7.3	64	8.4			62	8.4	7.3
SB4739	171,820	63	10.4	65	11.2	67	9.3	65	10.4	7.3
SB4766	177,870	63	8.3	65	8.2			63	8.3	10.5
SB4794	190,212	63	8.9	65	9.1			63	8.9	8.0
SB4829	181,742	62	9.1	64	9.9	66	9.8	62	9.9	8.9
SV 1136GF	192,148	62	7.0	64	7.1			64	7.0	10.1
SVGG 1312	162,382	62	7.4	64	7.4			62	7.4	7.0
SVGG 2097	192,632	62	5.6	64	5.4			62	5.4	7.4
SVGV 2089	165,770	62	4.2	64	4.9	66	7.1	64	4.9	5.4
Sahara	184,404	62	5.4	64	6.3	66	6.2	64	5.4	4.8
World Cup	192,148	62	7.1	64	7.1	66	7.3	62	7.1	8.3
LSD 0.05	16,444		2.0		2.0				2.0	1.9

^zMean of 3 replications; subplots of 5' were harvested from 18' plots in rows 30 in. apart. ^yTons/Acre adjusted to 50% 1-4 sieve for full and 5 sieve beans; yields for smaller sieve lines were not adjusted.

					S	ieve s	ize						Sie	eve size	ez		
Entry	Proc	Date	1	2	3	4	5	6	1-4	Total	1-4	1	2	3	4	5	6
							T/A							%			
Affirmed		63	0.3	0.5	2.0	5.0	0.7	0.0	7.8	8.5	91.3	3.6	6.2	23.1	58.5	8.7	0.0
Affirmed	х	65	0.2	0.2	1.4	5.4	0.7	0.0	7.2	7.9	91.2	2.8	2.8	17.1	68.5	8.8	0.0
Affirmed		67	0.1	0.2	0.5	5.1	3.4	0.0	5.8	9.2	63.0	0.9	1.9	5.2	55.0	37.0	0.0
BEX028	х	64	0.3	1.0	3.7	0.9	0.0		6.0	6.0	100.0	5.8	16.7	62.3	15.2	0.0	
BEX028		66	0.3	0.7	3.1	1.7	0.0		5.8	5.8	100.0	4.5	12.8	54.1	28.6	0.0	
BSC897	х	64	0.3	0.7	2.8	2.7			6.4	6.6	98.0	4.0	10.6	42.4	41.1		
BSC897		66	0.2	0.4	2.4	3.7			6.8	6.8	99.4	2.5	6.4	35.7	54.8		
Competitor		59	0.3	0.4	1.0	3.4	3.2		5.2	8.5	61.5	4.1	5.1	11.8	40.5	37.9	
Competitor	х	62	0.3	0.3	0.6	2.4	6.8		3.7	11.1	33.5	3.1	3.1	5.5	21.7	61.0	
Cosmos		62	0.1	0.3	0.5	2.0	2.8		2.8	6.1	46.8	2.2	4.3	7.9	32.4	46.0	
Cosmos	х	64	0.1	0.1	0.3	1.2	3.6		1.7	6.6	26.3	1.3	2.0	4.6	18.4	53.9	
Crockett		62	0.3	1.2	3.1	1.0	0.0		5.6	5.6	100.0	6.2	20.9	55.8	17.1	0.0	
Crockett	х	64	0.3	0.9	3.9	1.7	0.0		6.8	6.8	100.0	4.5	13.4	57.3	24.8	0.0	
GSVB17	х	62	0.2	0.3	0.6	2.0	3.6	0.2	3.0	6.8	44.6	2.5	4.5	8.9	28.7	52.9	2.5
GSVB17		64	0.2	0.3	0.6	1.9	4.6	0.3	2.9	7.9	37.0	2.2	3.3	7.2	24.3	58.6	4.4
GVS B59	х	62	0.0	0.2	0.5	2.7	5.0	0.9	3.4	9.2	36.8	0.5	2.4	5.2	28.8	53.8	9.4
GVS B59		64	0.0	0.2	0.5	2.3	4.5	1.3	3.0	8.8	34.2	0.5	2.0	5.4	26.2	51.5	14.4
GVSWB1	х	63	0.1	0.4	1.6	2.6	0.2	0.0	4.7	4.9	95.5	2.7	8.0	32.1	52.7	4.5	0.0
GVSWB1		65	0.1	0.3	1.0	3.0	0.3	0.0	4.4	4.7	92.6	1.9	5.6	20.4	64.8	7.4	0.0
Jackson	х	63	0.1	0.2	0.7	2.6	0.8	0.0	3.6	4.4	81.2	3.0	4.0	14.9	59.4	18.8	0.0
Jackson		65	0.1	0.1	0.7	2.8	0.7	0.0	3.7	4.4	85.0	3.0	3.0	15.0	64.0	15.0	0.0
OSU 7199	х	64	0.3	0.3	0.5	1.2	2.0		2.2	4.7	46.8	5.5	5.5	11.0	24.8	41.3	
OSU 7199		66	0.2	0.4	0.7	1.2	3.1		2.5	7.9	31.3	2.7	4.9	8.8	14.8	39.0	
OSU 7347	х	63	0.1	0.3	0.7	2.6	3.6		3.8	7.4	50.9	1.8	4.1	9.9	35.1	48.0	
OSU 7347		65	0.2	0.3	0.7	2.9	4.6		4.2	8.9	47.1	2.5	3.9	7.8	32.8	52.0	
OSU5630	х	62	0.3	0.4	0.8	3.2	4.4	0.2	4.8	9.4	50.9	3.7	4.2	8.8	34.3	47.2	1.9
OSU5630		63	0.3	0.4	0.8	3.8	3.7	0.1	5.4	9.3	58.7	3.8	4.7	8.9	41.3	40.4	0.9

 Table 8. Grades of commercial green bean lines in a yield trial planted June 15 OSU Vegetable Research Farm, Corvallis, 2021.^z

 Siove size

	Sieve size									Sieve sizez							
Entry	Proc	Date	1	2	3	4	5	6	1-4	Total	1-4	1	2	3	4	5	6
Outlaw		63	0.2	0.3	1.0	4.5	0.7	0.0	5.9	6.5	90.0	2.7	4.0	14.7	68.7	10.0	0.0
Outlaw	х	65	0.2	0.2	0.8	4.9	1.2	0.0	6.1	7.3	83.9	3.0	3.0	10.7	67.3	16.1	0.0
Pike		62	0.4	1.0	2.4	1.6	0.0		5.4	5.4	100.0	8.1	17.7	45.2	29.0	0.0	
Pike	х	64	0.3	0.7	2.9	2.7	0.0		6.7	6.7	100.0	4.6	11.1	43.1	41.2	0.0	
Pike		66	0.2	0.5	3.0	4.7	0.0		8.3	8.4	99.5	2.6	5.7	35.4	55.7	0.5	
R201149	х	62	0.5	2.0	1.7	0.1			4.4	4.4	100.0	12.0	46.0	40.0	2.0		
R201149		64	0.4	1.7	2.9	0.2			5.2	5.2	100.0	7.6	33.6	55.5	3.4		
R201149		66	0.3	1.4	3.6	0.3	0.0		5.5	5.5	100.0	4.7	24.4	64.6	6.3	0.0	
RR 3005	х	62	0.3	0.3	0.7	1.8			3.0	10.1	30.3	2.6	3.0	6.5	18.2		
RR 3006	х	62	0.2	0.3	0.7	2.5	5.1	0.9	3.6	9.6	37.3	1.8	2.7	6.8	25.9	53.6	9.1
RR 3009		59	0.4	0.7	1.5	3.4	1.0	0.0	6.0	7.0	85.6	6.3	9.4	21.9	48.1	14.4	0.0
RR 3011	х	59	0.5	0.8	1.8	1.7	2.5		4.8	7.4	64.7	7.1	10.6	24.7	22.4	34.1	
RR 3011		62	0.5	0.7	1.3	4.8	5.1	0.3	7.3	12.7	57.4	3.8	5.8	10.0	37.8	39.9	2.7
RR 3015	х	62	0.5	0.6	0.8	3.9	3.6	0.6	5.8	10.0	58.1	4.8	6.1	7.9	39.3	35.8	6.1
RR 3015		64	0.4	0.6	1.0	4.1	3.1	0.3	6.1	9.5	64.4	4.1	6.4	11.0	42.9	32.4	3.2
Sahara	х	62	0.3	0.3	0.8	3.3	0.5	0.0	4.6	5.1	90.6	5.1	6.0	15.4	64.1	9.4	0.0
Sahara		64	0.3	0.3	0.9	3.8	0.8	0.0	5.2	6.0	87.0	4.3	4.3	15.2	63.0	13.0	0.0
SB4734	х	62	0.2	0.6	2.0	4.0	0.0		6.8	6.8	99.4	3.2	8.3	29.3	58.6	0.6	
SB4734		64	0.2	0.4	1.9	4.6	0.2		7.1	7.3	97.6	2.4	5.4	26.3	63.5	2.4	
SB4735		63	0.3	0.4	1.8	4.3	0.2		6.8	7.0	96.9	3.7	6.2	25.5	61.5	3.1	
SB4735	х	65	0.2	0.3	1.2	5.6	0.9		7.3	8.1	89.3	2.1	3.2	15.0	69.0	10.7	
SB4735		67	0.2	0.3	1.1	6.0	1.2		7.5	8.8	86.1	2.0	3.0	12.4	68.7	13.9	
SB4739	х	63	0.3	0.5	1.0	3.3	4.5	0.3	5.1	9.9	50.9	3.1	4.8	10.1	32.9	45.6	3.5
SB4739		65	0.3	0.4	0.9	2.9	5.9	0.2	4.5	10.7	42.4	2.9	4.1	8.2	27.3	55.5	2.0
SB4766	х	63	0.1	0.2	0.6	2.7	4.2		3.6	7.8	46.1	1.7	2.8	7.3	34.3	53.9	
SB4766		65	0.2	0.2	0.3	2.4	4.7		3.0	7.7	39.2	2.3	2.3	4.0	30.7	60.8	
SB4794	х	62	0.3	0.6	2.6	4.9	0.3		8.4	8.7	96.0	4.0	6.5	29.5	56.0	4.0	
SB4794		64	0.3	0.4	1.8	5.4	0.9		7.9	8.8	90.0	3.0	5.0	20.9	61.2	10.0	
SB4794		66	0.2	0.3	1.7	6.0	1.5		8.2	9.7	84.7	1.8	2.7	18.0	62.2	15.3	

					S	ieve s	ize			Sieve sizez							
Entry	Proc	Date	1	2	3	4	5	6	1-4	Total	1-4	1	2	3	4	5	6
SB4829		62	0.3	0.4	0.7	4.3	3.0		5.7	8.8	65.3	4.0	5.0	7.9	48.5	34.7	
SB4829	х	64	0.3	0.4	0.7	3.5	4.5		4.9	9.4	52.3	3.7	4.2	7.4	37.0	47.7	
SV 1136GF	х	62	0.3	0.4	0.9	3.6	1.7		5.1	6.8	74.5	3.8	5.7	12.7	52.2	25.5	
SV 1136GF		64	0.2	0.4	0.8	3.3	1.9	0.1	4.7	6.7	69.9	3.3	5.9	11.8	49.0	28.8	1.3
SVGG 1312	х	62	0.3	0.5	1.1	3.7	1.7		5.6	7.2	77.1	4.2	6.6	15.1	51.2	22.9	
SVGG 1312		64	0.2	0.3	0.9	3.7	2.0		5.1	7.1	72.4	3.1	4.9	12.3	52.1	27.6	
SVGG 2097		62	0.2	0.3	1.0	3.0	0.7		4.5	5.2	86.7	4.2	6.7	18.3	57.5	13.3	
SVGG 2097	х	64	0.2	0.3	1.0	2.7	1.0		4.1	5.2	79.8	3.4	5.0	18.5	52.9	20.2	
SVGG 2097		66	0.2	0.2	0.7	4.1	1.4		5.1	6.5	78.7	2.7	3.3	10.7	62.0	21.3	
SVGV 2089		62	0.1	0.3	0.7	1.8	1.1	0.1	2.9	4.1	71.3	3.2	6.4	17.0	44.7	26.6	2.1
SVGV 2089	х	64	0.1	0.2	0.4	1.7	2.3	0.2	2.4	4.8	48.6	1.8	3.6	9.0	34.2	47.7	3.6
SVGV 2089		66	0.1	0.2	0.3	1.7	3.0	0.7	2.2	5.8	37.3	1.5	3.0	4.5	28.4	50.7	11.9
World Cup	х	62	0.3	0.3	0.9	2.7	2.1	0.0	4.3	6.4	66.7	4.1	5.4	14.3	42.9	32.7	0.7
World Cup		64	0.2	0.3	0.7	3.0	2.7	0.1	4.1	6.8	59.6	2.6	3.8	9.6	43.6	39.1	1.3
World Cup		66	0.1	0.2	0.5	2.5	3.7	0.2	3.3	7.1	46.0	1.2	2.5	6.7	35.6	51.5	2.5

^zPercent calculated as % of total of 1-6 sieve beans. "X" in Proc column indicates harvest that was sent for processing.

Table 9. Notes on a commercial green bean yield trial planted Jun 15 at the OSU Vegetable Research Farm, Corvallis, 2021. See Table 3 for an explanation of pod cross section shape.

					Pod				Flavor ^z		_		
Entry	DAP	Sieve size	Length (cm)	Straight- ness ^z	Cross- sec- tional shape	Smooth- ness ^z	Col- or ^y	Sweet- ness	Astrin- gency	Per- fumi- ness	Notes ^x		
OSU5630	62	5-6	15	5	r	5	5	5	7	1	Not showing any heat dam- age to pods ; becoming seedy before pods developed.		
OSU5630	63												
OSU5630	64										Becoming pithy		
Sahara	62	4	12	3	r	9	6	7	7	1	Strongly curved in all sv sizes prob due to heat; mixed seed dev in 3 & 4 sv		
Sahara	64										Becoming seedy & pithy		
Crockett	62	3-4	12	9	r	9	7	7	3	1	Tough skin; some pod con- strictions, ace pods		
Crockett	64										Slow seed dev but becoming pithy		
Crockett	66										\$ flat off type, still excellent quality		
Affirmed	63	4	15	7	r	7	5	7	7	1	Ace & pc pods. Pea seed wee- vil oviposit marks more visi- ble on pc types. Generally, a nice bean. Mixed seed dev in all sv sizes.		
Affirmed	65										Still good quality, short & junky 3 sv		
Affirmed	67										Not too seedy but starting to become pithy		
BEX028	64	3-4	16	7	r	7	5	7	5	3	Tough skin		

					Pod				Flavor ^z		
Entry	DAP	Sieve size	Length (cm)	Straight- ness ^z	Cross- sec- tional shape	Smooth- ness ^z	Col- or ^y	Sweet- ness	Astrin- gency	Per- fumi- ness	Notes ^x
BEX028	66										\$ ovals, seedy & becoming pithy
BSC897	64	3-4	14	7	oval- round	7	3	7	7	1	Ace pods, long slender bean, oval mix, mixed sv sz in 3 sv
BSC897	66										Many oval podded plants in plots
Competitor	59		5-6	15	5	ht	5	5			
Competitor	62	6	14	5	R	5	5	5	7	1	Larger sv missed the heat, lots of blanking in 3 & 4 sv
Cosmos	62	6	15	5	r-cb	7	3	8	7	1	Var seed dev in 6 sv, some blanking in 3 sv, grading low but still good quality
Cosmos	64										Yet good quality, var. seed dev w/in 5 & 6 sv; oval mix
Cosmos	66										Still good quality although grading very low
GSVB17	62	5	14	3	r-cb	7	3	7	7	1	Still good quality even though grading low, short & junky 3 sv
GSVB17	64										
GVS B59	62	6	12	5	cb	5	3	7	7	3	Short fat pods w/ some blanking in 3, 4 & 5 sv, graded low but still good quality, may have v conc set.

					Pod				Flavor ^z		
Entry	DAP	Sieve size	Length (cm)	Straight- ness ^z	Cross- sec- tional shape	Smooth- ness ^z	Col- or ^y	Sweet- ness	Astrin- gency	Per- fumi- ness	Notes ^x
GVS B59	64										Very strongly creaseback to the point, not sure they grade accurately
GVSWB1	63	4	14	7	r	5	5	7	7	1	Wax bean. Some blanking in smaller sieves; 2 sv some- what greenish
GVSWB1	67										Still good quality but becom- ing seedy
Jackson	63	4-5	14	8	r	9	6	7	7	1	Nice pods but stunted plants & low yield. Var seed sz w/in 4 & 5 sv
Jackson	65										Still good quality but variable seed dev in 5 sv
Jackson	67										Very seedy
OSU 7199	64	6	17	6	h	4	6	3	5	1	Long pods w/ good color, sl, off flavor
OSU 7199	66										Strong RC; still, good quality, pick Monday
OSU 7347	63	5	11	8	r	7	6	7	7	1	Short pods in this trial, some- what round seeds
OSU 7347	65										Becoming seedy
Outlaw	63	4	13	8	r	9	8	3	5	1	Ace pods
Outlaw	65										Becoming seedy
Outlaw	67										Seedy & becoming pithy
Pike	62										Good stage for 1st pick

					Pod				Flavor ^z		
Entry	DAP	Sieve size	Length (cm)	Straight- ness ^z	Cross- sec- tional	Smooth- ness ^z	Col- or ^y	Sweet- ness	Astrin- gency	Per- fumi- ness	_ Notes ^x
					shape						
Pike	64	3-4	16	8	r	7	7	7	3	1	Short pods & blanks in 3 sv, slow seed dev
Pike	66										Becoming pithy but not seedy
R201149	62	2-3	15	7	r	9	6	7	7	1	Partial strings, long slender shiny (ace) pods
R201149	64										Becoming seedy
R201149	66										Seedy & becoming pithy
RR 3005	62	6	15	6	cb	3	5	7	7	1	BBL type, blanking in 3 & 4 sv
RR 3006	62	6	15	4	r-cb	5	5	7	7	3	A bit fibrous; junky 3 sv; grad- ing low but quality still good
RR 3009	59	6	17.5	6	cb	6	7				
RR 3009	62	6	15	6	r-cb	5	5	5	7	1	Seems to have held up well in heat, but seed dev is pro- gressing rapidly
RR 3009	64										Very seedy
RR 3011	59	4-5	14.5	4	cb	5	8				
RR 3011	62	5	15	4	r-cb	5	5	7	7	1	Becoming very seedy
RR 3011											
RR 3015	62	6	16	4	cb	5	5	7	5	1	Some blanking in 3 sv
RR 3015	64										Almost mature seed but pods still succulent and green
SB4734	62	4	14	7	r	9	7	7	5	5	Tough skin & fibrous, rela- tively straight, ex color; has ace
SB4734	64										Becoming pithy

					Pod				Flavor ^z		
Entry	DAP	Sieve size	Length (cm)	Straight- ness ^z	Cross- sec- tional shape	Smooth- ness ^z	Col- or ^y	Sweet- ness	Astrin- gency	Per- fumi- ness	_ Notes ^x
SB4735	63	4	14	7	r	7	7	7	7	1	Ace pods, generally nice-look- ing bean
SB4735	65										Still of good quality
SB4735	67										Becoming pithy, hard to pick in the field - pods & stems more brittle than pod abscis- sion point
SB4739	63	6	16	7	r	9	6	7	5	1	Ace pods, generally nice-look- ing bean w/ good yield
SB4739	65										Becoming seedy
SB4766	63	5	14	8	r	9	6	7	7	1	Short pods in 3 sv, some w/ blanks; var seed dev in 3 & 4 sv
SB4766	65										Very seedy
SB4794	62	4	15	5	r-cb	7	6	9	3	1	Strings bottom suture; ace pods; some pithy pods in 4 & 5 sv
SB4794	64										pc type, shows pea seed wee- vil marks, becoming seedy
SB4794	66										Becoming pithy
SB4829	62	4-5	13	7	r	7	6	7	5	1	Not terribly seedy but be- coming pithy & a bit fibrous & stringy
SB4829	64										A few 6 sv but not enough to weigh

					Pod				Flavor ^z		
Entry	DAP	Sieve size	Length (cm)	Straight- ness ^z	Cross- sec- tional shape	Smooth- ness ^z	Col- or ^y	Sweet- ness	Astrin- gency	Per- fumi- ness	Notes ^x
SV 1136GF	62	4-5	14	7	r-cb	7	5	8	5	1	Mix seed dev in 3 & 5 sv, short 3 & 4 sv
SV 1136GF	64										Quality ok but becoming seedy
SVGG 1312	62	4	14	4	oval- round	7	7	7	7	1	Ace pods; oval tendency, nice 2 sv;
SVGG 1312	64										Slow seed dev
SVGG 2097	62	4	14	6	r	7	6	5	7	5	
SVGG 2097	64										Slow seed dev. blanks & polywogs in 3 sv
SVGG 2097	66										Still decent quality although 5 sv becoming seedy
SVGV 2089	62	4-5	15	4	r-cb	6	4	7	7	1	A few blanks in 3 & 4 sv
SVGV 2089	64										Becoming seedy but still good quality; junky 3 & 4 sv
SVGV 2089	66										3 sv mostly polywogs; quality ok & not too seedy
World Cup	62	5	15	6	r	7	5	7	7	1	Round seed, ace pods
World Cup	64										
World Cup	66										Still good quality

²Scale of 1 - 9 where 1 is least or worst and 9 is most or best. ⁹Scores based on a 1 - 9 scale with 9 darkest. Standard BBL color is rated as 5. ^xAbbreviations: sv = sieve, sz = size, \$ = segregating, Ace = shiny pods, pc = persistent color, conc = concentrated, RC = reverse curve, BBL = bush blue lake, CB = creaseback, WM = white mold. Table 10. Seed development of lines in snap bean yield trial planted June 15 and grown at the Vegetable Research Farm in 2021. Red highlighting indicates high values of the scale while blue indicates low values.

		Seed development in sieve size: ^z												
Entry	DAP	6	5	4	3	2	1							
OSU5630	62	8	7	6	3									
OSU5630	63	9	9	5	4									
OSU5630	64	9	9	7	5									
Sahara	62		7	5	3									
Sahara	64		9	7	7									
Crockett	62			4	2	1								
Crockett	64			5	3	2								
Crockett	66			7	5	3								
Affirmed	63		5	4	3									
Affirmed	65		5	4	2									
Affirmed	67		7	5	2									
BEX028	64			5	4	2								
BEX028	66			8	7	5								
BSC897	64		6	4	3	2								
BSC897	66		8	7	5									
Competitor	59	5	5	2	1									
Competitor	62	8	8	6	4									
Cosmos	62	6	5	3	2									
Cosmos	64	7	5	3	2									
Cosmos	66	7	7	5	3									
GSVB17	62	7	6	4	2									
GSVB17	64	9	8	4	2									
GVS B59	62	7	6	5	2									
GVS B59	64	9	8	8	7									
GVSWB1	63		6	4	3	2								
GVSWB1	67		8	7	3									
Jackson	63		5	5	3									
Jackson	65		6	4	3									
Jackson	67		9	8	7									
OSU 7199	64	8	6	4	2									
OSU 7199	66	8	7	6	4									
OSU 7347	63	8	6	5	3									
OSU 7347	65	9	8	7	3									
Outlaw	65		7	7	5									
Outlaw	67		9	8	7									
Pike	64			3	3	2								
Pike	66		7	7	6	2								
R201149	62			5	5	3	2							

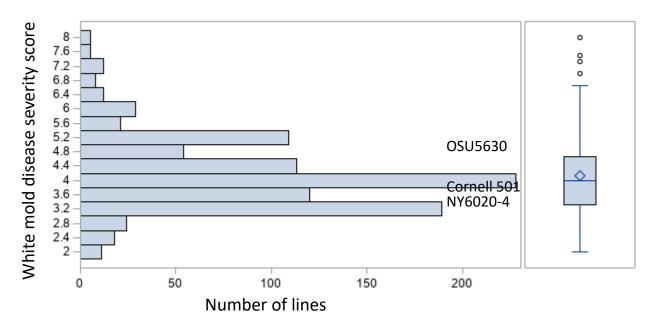
	Seed development in sieve size: ^z												
Entry	DAP	6	5	4	3	2	1						
R201149	64			7	5	5							
R201149	66			8	8	5							
RR 3005	62	8	8	5	3								
RR 3006	62	7	6	3	2								
RR 3009	59	5	5	3									
RR 3009	62	7	7	6	3								
RR 3009	64	9	9	7	7								
RR 3011	59	5	5	3	1								
RR 3011	62	9	9	7	5								
RR 3015	62	7	6	5	4								
RR 3015	64	9	9	7	5								
SB4734	62		7	5	3	1							
SB4734	64		9	7	5								
SB4735	63		4	4	3	1							
SB4735	65		6	5	3								
SB4735	67		7	5	4								
SB4739	63	7	5	3	2								
SB4739	65	8	8	5	4								
SB4766	63		8	7	5								
SB4766	65		9	7	5								
SB4794	62		7	4	3	1							
SB4794	64		5	4	3								
SB4794	66		9	7	5								
SB4829	62		7	6	3								
SB4829	64	9	8	6	3								
SV 1136GF	62		7	4	3								
SV 1136GF	64		8	6	5	3							
SVGG 1312	62		5	4	2								
SVGG 1312	64		5	3	2								
SVGG 2097	62		5	3	2								
SVGG 2097	64		5	4	2								
SVGG 2097	66		8	6	4								
SVGV 2089	62	5	4	3	2								
SVGV 2089	64	7	6	5	2								
SVGV 2089	66	8	7	5	3								
World Cup	62	7	6	5	2								
World Cup	64	7	6	4	3								
World Cup	66	8	8	7	5								

²Scale of 1-9 where 1 = no development, 3 = seed development beginning, 5 = moderate seed development, 7 = seedy appearance, 9 = very seedy appearance.

	White m	nold	Gray Mold						
Line	Incidence (%)	Severity ^z	Incidence (%)	Severity+					
7066	0.0	1.0	0.0	1.0					
7069	0.0	1.0	0.0	1.0					
7152	1.7	1.7	0.0	1.0					
7182	0.0	1.0	1.7	2.0					
7199	0.0	1.0	0.7	1.3					
7208	0.0	1.0	1.7	2.3					
7221	3.3	2.3	0.0	1.0					
7226	0.0	1.0	0.0	1.0					
7235	0.0	1.0	3.3	2.3					
7248	0.0	1.0	0.0	1.0					
7260	0.0	1.0	0.0	1.0					
7261	0.0	1.0	0.0	1.0					
7273	0.0	1.0	0.0	1.0					
7276	0.0	1.0	0.0	1.0					
7279	0.0	1.0	0.0	1.0					
7281	0.7	2.3	0.0	1.0					
7290	0.0	1.0	0.7	1.3					
7292	0.0	1.0	0.7	1.7					
7300	0.0	1.0	0.0	1.0					
7305	0.0	1.0	0.0	1.0					
7306	0.0	1.0	2.3	2.0					
7312	0.0	1.0	0.7	1.3					
7318	0.0	1.0	0.0	1.0					
7322	0.7	2.7	0.0	1.0					
7340	0.0	1.0	0.0	1.0					
7341	1.3	3.3	0.0	1.0					
7347	3.3	2.3	0.3	1.3					
91G	0.0	1.0	18.3	3.0					
Cornell	0.0	1.0	3.3	2.3					
NY6020	0.0	1.0	0.7	1.7					

Table 11. Incidence and severity for white mold and gray mold in a field trial at the OSU Vegetable Research Farm in 2021.

^z1 - 9 scale where 1 = low severity.


Table12. White mold severity scores for OSU experimental advanced green bean lines grown in the green house and evaluated with the straw test in 2021. Scale of 1 - 9 where 1 = resistant and 9 = highly susceptible.

Line	Severity score
NY6020-4	3.8
7199	4.4
<mark>7066</mark>	4.8
<mark>7187</mark>	4.8
7221	4.9
7322	5.4
Cornell 501	5.6
<mark>7261</mark>	6.0
7276	6.1
7290	6.2
7208	6.3
7306	6.3
7069	6.3
7226	6.3
7341	6.3
<mark>7281</mark>	6.4
7248	6.5
7300	6.6
7305	6.6
7312	6.6
7182	6.8
7292	6.8
<mark>7347</mark>	6.8
7279	6.9
7273	7.0
7235	7.2
<mark>7340</mark>	7.2
7260	7.6
<mark>7318</mark>	7.6
OR91G	7.7
7152	8.0
OSU5630	8.2
LSD 0.05	1.1

	Yield T/A Yield - % of chec									ck				
Entry	Pedigree	Days to harvest	Sieve size ^z	2019	2020	2021	Average	% OSU5630	% Saraha	% Pier- roton	% 1-4 ^z	White mold DSI ^y	Straw test DS ^x	
OSU5630 (ck)	5402/91G	70	5.5	10	13.4	9.9	11.1	100	138	245	53.2	14.6	8.2	
Sahara (ck)		69	4.0	6.1	10.3	7.8	8.1	73	100	178	95.1	15		
OSU7066	5630/Cornell 501	67	6.0	11.6	7.5	11.2	10.1	91	125	223	54.9	1.7	4.8	
OSU7187	6443/6772	73	6.0	11.4	9.6		10.5	95	130	232	48	5.6	4.8	
OSU7199	6792/6443	74	6.0	15.8	11.9	9.9	12.5	113	155	276	43.8		4.4	
OSU7261	ID Refugee/6443	73	5.0		11.2	10.3	10.8	97	133	237	58.3	3.6	6.0	
OSU7281	5630/6771	69	6.0	14.5	10.9	10.6	12.0	108	149	265	48.3	2.4	6.4	
OSU7318	5630/6771	70	6.0	16.6	13	12	13.9	125	172	306	54.7	6.1	7.6	
OSU7340	6792/5630	70	4.0	10.8	10.3	8.8	10.0	90	124	220	93.3	1.7	7.2	
OSU7347	6793/5630	73	5.0	13.4	12	9.5	11.6	105	144	257	41.1	2.8	6.8	
OSU7048	Banga/5600	64.5	2.5	5.6	6	6.4	6.0	54	74	132	100			
Pierroton (ck)		62	2.0	4	3.7	5.9	4.5	41	56	100	100			
LSD 0.05				2.8	2.1	2.5								

Table 13. Field productivity and disease resistance parameters for advanced green bean lines grown at the OSU Vegetable Research Farm in 2019 - 2021.

²Sieve size is the predominant to maximum sieve size (grades 1 – 6) that is characteristic of the line. ^YWhite mold DSI (disease severity index) is the geometric mean of percent incidence and severity (scale of 1-10). DSI ranges from 0 to 30 with lower numbers being more resistant. Anything with a DSI <10 shows some resistance. Data is from 2019 and Resistant checks had DSI of 1.0 (Cornell 501) and 4.3 (NY6020-4). ^xStraw test disease severity score conducted in the 2021 greenhouse, scale of 1 - 9 with 1 = resistant. Cornell 501 had a DS or 5.6 and NY6020-4 was 3.8.

Figure 1. Distribution of 959 green bean experimental lines tested for white mold resistance using the straw test performed in the OSU greenhouses in 2021. Two resistant checks (Cornell 501 and NY6020-4) and one susceptible check (OSU5630) are positioned on the graph based on their mean (N = 9) severity score.

1. PROJECT YEAR: 2021

Project Title: Broccoli Breeding and Evaluation

PI: James R. Myers Organization: Oregon State University Telephone: 541-737-3083 Email: james.myers@oregonstate.edu Address: ALS 4017, Department of Horticulture

City/State/Zip: Corvallis, OR 97331

Co-PI: Zak Wiegand

Telephone: 541-737-6496 Email: <u>Zak.Wiegand@oregonstate.edu</u> Address: Wiegand Hall, Department of Food Science and Technology

Total project request (all years): Year 1: \$8,315 (breeding) \$5,696 (processing) \$14,012 (total)

Other funding sources: None

2. EXECUTIVE SUMMARY (ABSTRACT):

Oregon has the climate and infrastructure to produce high quality broccoli for processing. The main constraints are high labor costs and buffering against environmental perturbations. We have been breeding broccoli to be better adapted to mechanical harvest as well as selecting for traits that improve processing quality. The objectives of this project are to breed high yielding broccoli cultivars with excellent processing quality and field productivity that includes exserted, large and firm heads with reduced leaves about the head. Processing traits include segmented heads with uniformly colored, small florets with fine beads and short pedicles. In 2021, we grew the breeding nursery and a replicated yield trial. The yield trial consisted of eight experimental hybrids and two commercial check cultivars and four commercial hybrids that have shown stable performance in heat stress trials. The broccoli plots were planted into field with a recently incorporated cover crop and as a result of the nitrogen tie-up, yields were extremely low. While differing in total yields, all hybrids had similar net yields. OSU experimental lines had reduced leafage around heads and a greater recovery of small (<2.5 in.) florets. Our observation nurseries consisted of 17 inbred lines, 14 F1 hybrids for which we had too little seed to plant in replicated trials, 21 early generation lines, and 11 CMS backcross lines.

3. FULL REPORT

3.a. BACKGROUND

Oregon has a climate favorable for summer production of broccoli with relatively mild temperatures and a long growing season. The challenges facing broccoli growers are the cost of production and buffering against climate perturbations. The challenges facing processors are finding cultivars with the desired quality and ease of processing characteristics along with productivity. Mechanization has reduced labor costs in many crops, but Cole crop harvest remains relatively non-mechanized. Large labor crews are typically needed to harvest broccoli and cost and access to labor are the two main problems for broccoli harvest – cost in terms of wages to workers and access in that other crops such as blueberries need labor for harvest at the same time as broccoli. The industry is progressing towards mechanization but problems remain in developing systems that achieve efficiency in the field and deliver quality product to the processing plant. One difficult aspect of mechanical harvest in particular appears to be the removal of leaves from around the head.

The three pieces that have to be joined to achieve efficient mechanization are the production system, the harvest equipment, and the plant genetics. Our program focuses on the plant genetics. The OSU broccoli breeding program has worked for over 25 years to develop cultivars that have architectural traits that make the cultivar more amenable to machine harvest.

The two key factors for developing cultivars suitable to machine harvest are uniform heading and appropriate plant architecture. Most commercially available broccoli hybrids are high yielding but have short plants with heavy and poorly exserted heads. Short plants have high fiber in the portion of the stem subtending the head that must be used to achieve a normal-length cut. The lack of height as well as the high fiber makes them a challenge for machine harvest.

In the processing plant, traits that would increase the efficiency of the process include reducing leaves around the head and minimizing large floret size. Historically, leaves around the head have been removed by the harvester when harvested by hand. Leaf removal by machine has proved more difficult with the result that heads coming into the plant carry too much vegetative matter, resulting in the rejection of lots. Florets larger than 2½ inches have to be recut, which decreases processing efficiency; plants with small florets would be preferred over those with high yields but large florets. Emphasis for most commercial hybrids has been on large, dense heads on short-stature plants. As a result, these have many large leaves around the head, and achieve high head weight by producing larger florets. These are traits that are amenable to breeding and our exserted head materials already have fewer leaves and smaller florets with the main challenge with these hybrids being achieving high levels of productivity in this architectural package. Other quality traits needed in a processing broccoli include florets and stems that are uniformly dark green in color and shape; and beads that are small and retained during the blast freezing process.

Disease resistances that are desirable include bacterial head rot, downy mildew, and club root resistances. Inbred lines from the Oregon State University breeding program have the genetic potential to create hybrids with greatly improved head exsertion and segmentation, better color, and low fiber. The OSU hybrids are suitable for machine harvest, and some inbreds possess some of the already discussed disease resistance characteristics.

Many OSU hybrids are high quality and have shown stable, high yields over several years, but to bring these into commercial production, cytoplasmic male sterility needs to be backcrossed into inbreds used as the female in crosses. There is also a need to derive new inbreds with improved disease resistance.

3.b OBJECTIVES

- 1. Breed broccoli cultivars with excellent processing quality and field productivity.
 - a. Field traits include exserted heads with reduced leaves about the head on lodging resistant plants. Hybrids should be high yielding with large and firm heads.
 - b. Processing traits include segmented heads that produce uniformly colored florets that are dark green in color with fine beads and short pedicles. Florets should be <2%'' in size.
- 2. Screen OSU inbreds and hybrids for heat tolerance and stability.
- 3. Develop seed production systems using cytoplasmic male sterility (CMS) to produce field scale quantities of F₁ hybrid seed.

3.c. SIGNIFICANT FINDINGS

- Broccoli plots were planted into a field with a recently incorporated cover crop and as a result of the nitrogen tie-up, yields were extremely low (top yield 2.9 T/A with a single destructive harvest).
- OSU experimental lines had reduced leafage around heads and a greater recovery of small (<2.5 in.) florets. They also showed better quality traits such as dark green stems and florets.
- Among the four commercial lines tested, Castle Dome had highest yield and good floret recovery.

3.d. METHODS

We continued to derive new inbreds and use these on a small scale to produce F_1 hybrid seed for replicated yield trials. Inbreds saved from the 2020 fall trials were grown from cuttings in the greenhouse. During the winter of 2021, these were bud-pollinated to perpetuate the line, and crossed to other inbred lines to produce seeds for field evaluation of combining ability for F_1 hybrid production. Crossing efforts focused on obtaining enough seed for replicated field trials of new hybrid combinations. Our breeding cycle is set up for fall production in the field, but where sufficient seed is available, we trial hybrids in the spring as well. New inbreds obtained from selections of a random-mated mass selected population originally developed under organic production systems, where cuttings have been brought into the greenhouse for self-pollination. Approximately five or more generations of selfing are required to develop homozygous inbreds.

Inbreds and experimental hybrids and commercial hybrids were grown in the 2021 main fall planting in the field in a single replicate observation trial, and hybrids alone in a replicated yield and quality evaluation trial (Tables 1a & 1b). Plots were evaluated for head size, shape, and exsertion, segmentation, floret texture and color, maturity and disease resistance (Tables 2a & 2b).

A replicated yield trial was conducted in the fall. Eight of the most promising OSU experimental hybrids and two check cultivars were planted along with four commercial hybrids that had shown stable performance in heat stress trials. Of the checks, Emerald Pride is the industry standard, Cascadia is a recent release from the OSU breeding program. Hybrids were transplanted in one-row plots 30 feet in length and replicated four times with a one-foot in-row spacing. In addition to observation data, yield data was obtained. Entries in the yield trials were taken to the OSU pilot processing plant for blanching and freezing. Frozen material was evaluated at the OSU winter cutting and will be displayed in 2021 at Oregon Processed Vegetable Grower winter meetings and growers, processors and seed company representatives will be invited to evaluate these.

Backcrossing of selected hybrids to place the nuclear genome in the Ogura cytoplasmic male sterile (CMS) background continued. We crossed to develop CMS forms of S454, S462, S463, S471 and S473. Seed production of selected hybrid combinations using a fertile inbred as a male and a CMS inbred as a female was to be evaluated in the field using isolation plots.

3.e. RESULTS & DISCUSSION

Greenhouse inbred and hybrid seed production: Cuttings were taken from inbreds and breeding lines grown in the field in 2020 to establish material for crossing and hybrid seed production in the greenhouse during the winter of 2020-2021. Sixty-two selections were taken for rooting with most of these

surviving to be potted for crossing. These were bud pollinated by hand to self the inbreds and produce seed for the 2021 growing season. Most lines are highly inbred but a few are still segregating and showing significant variation in the field. The process was repeated at the end of the 2021 growing season where cuttings of 65 lines were collected and brought into the greenhouse for rooting in November.

Yield Trial: In the fall trial, four commercial hybrids and two checks were grown along with eight OSU experimental hybrids (Table 1a & 1b). Because of low overall yields, few differences were observed among hybrids. The data continues to support the observation that heavier heads produce more florets and that yield in some broccoli cultivars has been achieved by increasing floret size rather than floret number. Observation notes from the yield trial revealed large differences in head and canopy height (Table 2a) with commercial hybrids being significantly shorter than the OSU experimental lines. Another trait that appears to be important in producing high yielding heads is a short branch length. Eiffel demonstrated this trait (Table 2a), and we are evaluating this trait in our inbred lines. Because of the small plant size, we did not observe any hollow stem, so data on this trait is not reported. Most OSU hybrids showed a domed head shape, acceptable bead size and floret segmentation (Table 2b).

Observation Trials: The observation trial included 17 highly inbred lines (Table 3), 14 F₁ hybrids for which we had too little seed to plant in replicated trials (Table 4), 21 lines still undergoing inbreeding and selection (Table 5), and 11 cytoplasmic male sterility (CMS) lines at various stages of backcrossing to selected inbreds (Table 6). These were evaluated at heading for various traits important to processing including number of blind plants, various head characteristics (color, bead size, segmentation) and plant characteristics (head exsertion, branching, uniformity and overall performance). Twelve inbreds received overall ratings of 7 or above (Table 3). Among F1 hybrids in the observation trial, nine received overall ratings of 7 or above (Table 4).

Sensory analysis: Results from the evaluation of processed broccoli samples is shown in Table 7. This was a non-blind test, which may have influenced why Emerald Pride was rated best overall. Several experimental hybrids and commercial cultivars had relatively high ratings.

4. BUDGET DETAILS

\$2,619
\$1,966
\$1,500
\$150
\$300
\$1,780
\$8,315

2) Processing (Wiegand)	
Salaries and benefits	
Faculty Research Assistant	\$3,242
OPE @ 61.59%	\$1,997
Wages and benefits	
Student Wages	\$246
OPE @ 10%	\$25
Supplies	\$187
Total	\$5,696
Grand Total	\$14,012

BUDGET NARRATIVE

Salary and OPE is requested for a full-time faculty research assistant who will commit approximately 6% FTE to broccoli breeding OPE for FRA is 75.4%. The remainder of salary will come from other sources. For the Food Science & Technology faculty research assistant, approximately 5% FTE will be required to process broccoli samples; the remainder of salary to come from other sources. \$1,500 is requested for a summer undergraduate student to assist in plot maintenance and harvest operations. The FST FRA will also supervise an undergraduate student in broccoli processing. Undergraduate student OPE is 10%. Funds for services and supplies includes \$300 for field and greenhouse supplies ((fertilizer, pots, labels, stakes, tags, crossing supplies, envelopes, paper bags, etc.). Facilities user charges include land use rental (0.5 acre at \$1,390 per acre = \$695), and greenhouse rental (\$1.55*500 sq. ft. = \$775).

Table 1a. Yield and yield parameters from a yield trial of OSU experimental broccoli hybrids and checks planted at the OSU Vegetable Research Farm in 2021. Columns following a trait indicate statistically significant differences from the check hybrids Cascadia (Cas) and Emerald Pride (EP). ns = not significantly different, * = significantly different at $p \le 0.05$, ** = significantly different at $p \le 0.01$, and *** = significantly different at $p \le 0.001$. ns below a trait column indicates no significant differences for the trait.

Hybrid	Total head wt. T/A	Cas	EP	Total no. heads/A	Cas		Immature heads no./A	Cas	EP	lmmature heads T/A	Cas	EP	Cull no. heads/A	Cas	EP	Cull heads T/A	Cas	EP	Net no. heads/A	Cas	ED	Net heads T/A	Cas	EP
Asteroid	2.3			23.8			581		**	0.1		**	2,468			0.4			10,745	*		1.8		
Cascadia	1.9		*	23.0			1,307		*	0.1		*	4,356		*	0.5			7,696			1.3		*
Castle Dome	3.7	***	**	25.8			1,888			0.2			2,468			0.6			10,600	*		2.9	***	*
Eiffel	1.7			19.8			145		**	0.0		***	3,920		*	0.6			7,405			1.1		**
EP X S481	3.2	***		27.0			726		**	0.1		**	3,485			0.5			11,471	*		2.7	***	
Emerald Pride	2.7	*		22.3			2,904	*		0.3	*		774	*		0.2			9,293			2.2	*	
Lieutenant	3.6	***	*	28.3	*	*	1,742			0.2			3,485			0.9	*	**	11,180	*		2.5	***	
S469 X S486	2.5			24.3			1,452			0.1		*	2,904			0.4			9,728			2.0	*	
S471 X S481	1.6		**	23.0			968		*	0.1		**	5,614		**	0.5			6,776			1.0		**
S471 X S488	1.4		**	17.5	*	*	290		**	0.0		***	3,920		*	0.4			5,953			1.0		**
S479 X S481	1.3		***	19.0			290		**	0.0		***	5,082		**	0.4			5,663		*	0.8		***
S479 X S486	1.8		*	24.0			1,162		*	0.1		*	4,356		*	0.4			8,422			1.3		*
S479 X S487	1.9		*	22.8			290		**	0.0		***	5,663		**	0.7		*	7,260			1.2		**
S479 X S488	1.6		**	21.0			1,597			0.1		**	4,356		*	0.5			6,244		*	1.0		**

Table 1b.Plant, leaf and head characteristics from a yield trial of OSU experimental broccoli hybrids and checks planted at the OSU Vegetable Research Farm in 2021. Columns following a trait indicate statistically significant differences from the check hybrids Cascadia (Cas) and Emerald Pride (EP). ns = not significantly different, * = significantly different at $p \le 0.05$, ** = significantly different at $p \le 0.01$, and *** = significantly different at $p \le 0.001$. ns below a trait column indicates no significant differences for the trait.

Hybrid	Days to harvest	Cas	EP	Head dia. (cm)²	Cas	EP	Leaves (%) ^v	Cas	EP	Florets (%) ^x	Cas	EP	Small florets (%) ^w	Cas	EP	Aphid infested heads (%)	Cas	EP	Total wt. T/A	Cas	EP
Asteroid	74	***	***	10.9			13.5	*		62.5		**	81.0			24.1			2.6		
Cascadia	79		***	11.0			5.1		***	63.1		**	92.1			32.2		*	2.0		* *
Castle Dome	67	***	***	12.6	*		10.3		**	58.8			87.8			19.2			4.2	* * *	
Eiffel	74	***	***	9.1	**	**	16.0			68.9	*	***	66.5	*		44.4		***	2.0		***
EP X S481	73	***		11.3			2.8		***	53.5	*		95.2			20.8			3.3	**	
Emerald Pride	73	***		11.5			21.5	***		54.5	**		88.3			6.0	*		3.5	**	
Lieutenant	73	***		11.0			16.9	**		56.8	*		47.9	***	**	14.8			4.4	* * *	*
S469 X S486	70	***	***	11.9			6.2		**	64.2		**	89.1			20.6			2.7		
S471 X S481	77	***	***	9.4	*	**	14.4	*		56.6	*		84.2			42.5		**	1.9		***
S471 X S488	79	*	***	10.6			8.8		**	59.3			85.4			37.3		**	1.5		***
S479 X S481	79	*	***	10.2			9.8		*	53.0	***		72.2			44.7		***	1.4		***
S479 X S486	77	***	***	10.7			9.3		**	58.0			93.4			31.9			2.0		***
S479 X S487	74	***	***	9.8		*	6.2		**	58.6			85.8			51.1	*	***	2.0		***
S479 X S488	74	***	***	9.4	*	**	11.0		*	57.1	*		87.5			49.1		***	1.8		***

²Mean of 10 heads per rep. ⁹Percent by weight of leaves attached to head after trimming to 6.5 in. ^{*}Percent of head that is florets by weight. ^wPercent of head that is florets <2.5 in. in diameter.

Table 2a. Observation notes of plant characteristics on a yield trial of OSU experimental broccoli hybrids and checks planted at the OSU Vegetable Research Farm in 2021. Columns following a trait indicate statistically significant differences from the check hybrids Cascadia (Cas) and Emerald Pride (EP). ns = not significantly different, * = significantly different at $p \le 0.05$, ** = significantly different at $p \le 0.01$, and *** = significantly different at $p \le 0.001$. ns below a trait column indicates no significant differences for the trait.

Hybrid	Plants/A (no)²	Head dia. (cm)	Cas	EP	Head ht. (cm)	Cas	EP	Canopy ht. (cm)	Cas	EP	Exsertion ^y	Cas	EP	Branch depth ^x	Cas	EP	Stem color ^w	Cas	EP
Asteroid	16,262	12.3			38	***		45	*		5.0	***		3.0	***		6.0	*	*
Cascadia	16,553	13.5			59		***	53		**	7.8		***	6.5		***	7.0		***
Castle Dome	16,553	15.3		*	35	***		40	***		5.5	***		5.5		*	5.0	***	
Eiffel	15,827	11.5			50	***	***	59		***	7.3		***	1.5	***	*	4.5	***	
EP X S481	17,279	12.5			54	*	***	52		**	7.5		***	7.5		***	7.0		* * *
Emerald Pride	16,456	12.7			37	***		42	**		5.0	***		3.7	***		5.0	***	
Lieutenant	17,279	12.8			34	***		48			4.0	***	*	3.5	***		3.0	***	* * *
S469 X S486	16,988	13.0			67	**	***	54		**	8.8	*	***	9.0	**	***	7.0		* * *
S471 X S481	16,408	12.0			57		***	53		**	8.5		***	5.0	*		7.0		* * *
S471 X S488	17,134	12.8			62		***	54		**	9.0	**	***	5.0	*		7.0		* * *
S479 X S481	16,408	11.8			59		***	53		**	8.0		***	5.5		*	7.0		* * *
S479 X S486	17,134	12.8			60		***	53		**	9.0	**	***	6.5		***	7.0		* * *
S479 X S487	17,134	12.5			65	*	***	56		***	9.0	**	***	8.0	*	***	8.3	**	* * *
S479 X S488	17,279	12.5			63		***	54		**	8.8	*	***	7.5		***	6.0	*	*

²Trial was transplanted on Aug. 9 into 30 ft. rows spaces 30 in. apart. Plant spacing within row was 1 ft. ^yScale of 1 - 9 where 1 is least and 9 is most head exsertion above canopy. ^xBranching depth on a 1 - 9 scale where less depth is preferred. ^wScale of 1 - 9 where 1 is lighter and 9 is very dark green.

Table 2b. Observation notes of head characteristics of a yield trial of OSU experimental broccoli hybrids and checks planted at the OSU Vegetable Research Farm in 2021. Columns following a trait indicate statistically significant differences from the check hybrids Cascadia (Cas) and Emerald Pride (EP). ns = not significantly different, * = significantly different at $p \le 0.05$, ** = significantly different at $p \le 0.01$, and *** = significantly different at $p \le 0.001$. ns below a trait column indicates no significant differences for the trait

_Hybrid	Head shape ^z	Cas	EP	Bead size ^v	Cas	EP	Head firmness ^x	Cas	EP	Uniformity [∞]	Cas	EP	Segmentation ^v	Cas	EP	Overall ^w	Cas	EP
Asteroid	5.3			3.5	**	**	7.0			5.5			3.8	***		7.0		***
Cascadia	4.8			5.5			7.0			5.0			7.3		***	7.3		***
Castle Dome	4.5			7.0	*		4.5	**	*	3.5		*	3.0	***		5.0	***	
Eiffel	5.8		*	3.0	***	**	9.0	*	**	3.5		*	3.0	***		7.0		***
EP X S481	4.3			5.0			6.0			4.5			7.8		***	7.0		***
Emerald Pride	4.3			5.7			6.3			5.7			3.0	***		5.0	***	
Lieutenant	5.3			7.0	*		5.5			5.5			2.5	***		3.5	***	***
S469 X S486	4.8			3.0	***	**	4.5	**	*	4.0			8.3		***	7.0		***
S471 X S481	6.0	*	**	3.0	***	**	7.3			5.0			8.3		***	6.5		**
S471 X S488	5.3			5.5			7.0			4.5			8.3		***	7.5		***
S479 X S481	5.5			3.0	***	**	7.5			3.0	*	**	9.0	**	***	7.0		***
S479 X S486	6.5	**	**	3.0	***	**	6.3			4.5			8.3		***	7.0		***
S479 X S487	6.0	*	**	3.0	***	**	6.8			3.0	*	**	8.0		***	7.3		* * *
S479 X S488	6.3	**	**	3.5	**	**	6.3			3.0	*	**	7.3		***	6.8		***

^zScale of 1 - 9 where 1 is convext head, 5 is a flat head and 9 is an extreme domed head. ^yScale of 1 - 9 where 1 is coarse, 5 is medium and 9 is very fine bead size. ^xScale of 1 - 9 where 1 is soft and 9 is very firm head. ^wScale of 1 - 9 where 1 is least and 9 is best. ^vScale of 1 - 9 where 1 is smooth dome, 5 is segmented but touching florets and 9 is separated florets.

Entry	Date evaluated	No. plants	No. blind ^v	Head ht. (cm)	Canopy ht. (cm)	Exsertion ^x	Head shape ^w	Segmentation	Branch depth ^u	Bead size ^t	Color ^s	Head dia. (cm)	Head firmness ^r	Head uniformity ^q	Overall ^q	Notes
																Head dia good indicator of maturity; hvy
S446	28-Oct	11	0	54	60	5	6	3	5	1	7	11	7	3	5	aphids; head rot
S466	28-Oct	3	0	50	56	5	6	3	3	1	7	10	7	5	5	Immature head
S454	28-Oct	11	0	50	48	7	4	7	5	2	9	16	5	3	7	Var mat
S462	28-Oct	11	0	70	58	9	8	9	7	1.5	7	10	5	3	7	Loose heads
S463	28-Oct	7	0	55	48	8	7	7	3	1	9	10	8	3	7	Rosetting
S465	10-Nov	11	1	45	50	7	6	5	5	1	7	10	7	5	7	V late
S469	28-Oct	14	0	65	57	9	7	9	5	1.5	9	12	5	3	7	
S471	28-Oct	14	1	56	51	8	4	8	3	1.5	8	16	9	3	9	
S473	28-Oct	11	2	60	58	8	4	7	5	1.5	9	12	3	3	3	1 plt w/ leaf spots
S475	28-Oct	14	0	50	50	7	6	5	3	2	8	8	5	3	5	
S475-1G	28-Oct	2	0													Glossy leaves but otherwise similar to S475
S479	28-Oct	14	0	51	48	8	7	8	5	1	9	13	7	3	7	Small uneven florets
S481	28-Oct	8	0	55	62	7	7	8	3	1	7	10	9	3	7	Small heads
S483	28-Oct	10	0	45	45	6	4	8	5	1.5	7	15	7	3	8	Head rot beginning
S486	28-Oct	12	0	65	55	9	5	9	7	1.5	9	20	8	3	9	Loose heads; stunted plants (6)
S487	28-Oct	14	0	62	52	9	5	9	5	1.5	8	12	5	3	7	
S488	28-Oct	14	0	63	58	9	5	9	3	1	7	10	8	3	8	

Table 3. Field observation data for experimental broccoli inbred lines grown at the OSU Vegetable Research Farm in 2021^z.

²Trial was transplanted on Aug. 9 into 30 ft. rows spaces 30 in. apart. Plant spacing within row was 1 ft. ^YNumber of plants per plot that failed to form a single central head. ^xScale of 1 - 9 where 1 is least and 9 is most head exsertion above canopy.^wScale of 1 - 9 where 1 is convext head, 5 is a flat head and 9 is an extreme domed head. ^vScale of 1 - 9 where 1 is smooth dome, 5 is segmented but touching florets and 9 is separated florets. ^uBranching depth on a 1 - 9 scale where less depth is preferred. ^tScale of 1 - 9 where 1 is coarse, 5 is medium and 9 is very fine bead size.^sScale of 1 - 9 where 1 is lighter and 9 is very dark green. ^tScale of 1 - 9 where 1 is soft and 9 is very firm head. ^qScale of 1 - 9 where 1 is least and 9 is very firm head.

Entry	Date evaluated	No. plants	No. blind ^v	Head ht. (cm)	Canopy ht. (cm)	Exsertion ^x	Head shape ^w	Segmentation ^v	Branch depth ^u	Bead size ^t	Color ^s	Head dia. (cm)	Head firmness ^r	Head uniformity ^q	Overall ^q	Notes
S469 X S487	1-Nov	12	0	83	70	9	8	7	9	2	9	15	7	7	7	
S471 X S463	1-Nov	14	0	55	57	7	7	5	5	2	5	17	8	7	9	Robust good veg frame
S475 X S463	1-Nov	11	0	61	55	8	7	5	7	2	9	18	7	7	9	Robust & vigorous, some leaners
S475 X S481	1-Nov	11	0	61	58	7	7	7	5	2	9	13	7	5	8	Leaners
S475 X S487	1-Nov	14	0	66	60	9	7	7	5	1	9	14	7	5	7	
S475 X S488	10-Nov	1	0	65	50	9	6	7	5	2	7	14	5	5	5	
S479 X S481	1-Nov	12	0	60	59	7	7	5	3	1	7	14	8	7	9	
S479 X S486	1-Nov	14	0	57	49	7	7	7	5	1	7	15	7	5	7	Leaners
S479 X S488	1-Nov	14	0	63	61	7	7	7	3	1	9	13	9	5	9	Leafy heads
EP X S471	1-Nov	14	0	55	55	6	6	1	5	3	5	16	5	5	5	
EP X S475	1-Nov	1	0	55	53	7	5	6	5	2	9	15	7	3	5	
EP X S481	1-Nov	15	0	57	68	5	7	2	7	2	9	17	9	3	7	
EP X S483	1-Nov	15	0	53	55	5	4	3	5	2	7	17	7	3	5	
S475-1G X S471	1-Nov	15	0	54	54	7	7	3	3	1.5	7	10	9	5	7	Not glossy

Table 4. Experimental broccoli hybrids for which there was not enough seed for replicated trials, grown at the OSU Vegetable Research Farm in2021.

²Trial was transplanted on Aug. 9 into 30 ft. rows spaces 30 in. apart. Plant spacing within row was 1 ft. ^YNumber of plants per plot that failed to form a single central head. ^xScale of 1 - 9 where 1 is least and 9 is most head exsertion above canopy.^wScale of 1 - 9 where 1 is convext head, 5 is a flat head and 9 is an extreme domed head. ^vScale of 1 - 9 where 1 is smooth dome, 5 is segmented but touching florets and 9 is separated florets. ^uBranching depth on a 1 - 9 scale where less depth is preferred. ^tScale of 1 - 9 where 1 is coarse, 5 is medium and 9 is very fine bead size.^sScale of 1 - 9 where 1 is lighter and 9 is very dark green. ^tScale of 1 - 9 where 1 is soft and 9 is very firm head. ^qScale of 1 - 9 where 1 is least and 9 is best. **Table 5.** Early generation experimental broccoli lines undergoing selfing to homozygosity in a breeding nursery grown at the OSU VegetableResearch Farm in 2021.

Entry	Date evaluated	No. plants	No. blind ^v	Head ht. (cm)	Canopy ht. (cm)	Exsertion [×]	Head shape ^w	Segmentation	Branch depth ^u	Bead size ^t	Color ^s	Head dia. (cm)	Head firmness ^r	Head uniformity ^a	Overall ^q	Notes
(S471/S483)-1-1	28-Oct	12	0	57	52	8	7	5	5	1	5	7	9	3	5	Small heads
(S471/S483)-1-2	28-Oct	13	0	61	56	8	7	8	5	1	5	12	8	3	8	Good veg frame despite low fert
(S473/S463)-2	28-Oct	14	0	66	61	9	5	7	7	2	9	15	5	3	8	
(S463/S473)-1-1	28-Oct	11														Still young
(S463/S473)-1-2	28-Oct	18	1	66	58	9	6	7	5	1	7	13	5	3	7	
(S471/S483)-1-4	28-Oct	12	0	50	43	8	6	8	3	1.5	7	13	9	3	9	V nice broccoli
(S473/S463)-1	28-Oct	14	0	56	54	9	4	8	7	1	5	13	7	3	7	Uneven florets; some lodging
(S475/S463)-1-1-1	28-Oct	9	0	46	41	7	6	7	5	1.5	7	13	5	3	5	
(S475/S463)-1-1-2	28-Oct	13	0	43	37	7	5	5	3	2	3	15	8	3	5	Resembles Emerald Pride
(S475/S463)-1-1-3	28-Oct	15	0	57	51	7	5	7	5	1	7	13	3	3	3	Loose heads small florets
(S475/S463)-1-1-4	28-Oct	15	0	50	46	7	5	8	5	1	7	19	9	3	7	Loose heads
(S475/S463)-1-1-5	28-Oct	14	1	55	51	7	4	7	7	1	8	18	9	3	8	
(S475/S463)-1-1-6	1-Nov	15	0	41	41	5	4	9	5	1	7	11	9	3	5	
(S475/S463)-1-1-7	1-Nov	14	0	42	44	5	5	7	3	1	5	12	9	5	7	
(S475/S463)-2-1-1	1-Nov	14	0	53	48	7	7	5	5	1	9	10	9	3	7	Small heads
(S475/S463)-3-1-1	1-Nov	13	0	62	57	9	6	9	9	1	7	13	9	5	7	
(S483/S471)-2-1-1	1-Nov	14	0	59	47	9	7	9	7	1	9	11	5	5	5	
(S471/S486)-1	1-Nov	12	0	61	51	9	5	9	9	1	9	15	9	5	7	Loose heads
(S471/S490)-1	1-Nov	13	0	53	45	7	5	3	5	2	7	13	5	3	5	
(S471/S492)-1	1-Nov	11	0	57	57	7	7	5	3	1	5	10	9	3	7	Late
(S475/S486)-1	1-Nov	10	0	62	57	7	5	7	5	2	9	15	5	5	5	Head rot

²Trial was transplanted on Aug. 9 into 30 ft. rows spaces 30 in. apart. Plant spacing within row was 1 ft. ^yNumber of plants per plot that failed to form a single central head. ^xScale of 1 - 9 where 1 is least and 9 is most head exsertion above canopy.^wScale of 1 - 9 where 1 is convext head, 5 is a flat head and 9 is an extreme domed head. ^vScale of 1 - 9 where 1 is smooth dome, 5 is segmented but touching florets and 9 is separated florets. ^wBranching depth on a 1 - 9 scale where less depth is preferred. ^tScale of 1 - 9 where 1 is coarse, 5 is medium and 9 is very fine bead size.^sScale of 1 - 9 where 1 is lighter and 9 is very dark green. ^tScale of 1 - 9 where 1 is soft and 9 is very firm head. ^qScale of 1 - 9 where 1 is least and 9 is best.

Line	No. plants	No. blind ^v	Head ht. (cm)	Canopy ht. (cm)	Exsertion [×]	Head shape ^w	Segmentation	Branch depth ^u	Bead size ^t	Color ^s	Head dia. (cm)	Head firmness ^r	Head uniformity ^a	Overall ^q	No. of back- crosses
(A463/S463)	15	0	56	54	7	7	3	5	1	9	12	9	5	5	many
O446	15	0	67	65	8	7	3	3	2	7	10	9	3	7	many
O446*2-1/S462-1/S454	14	0	62	57	8	4	5	7	2	9	12	7	5	7	2
0454-1*3	13	0	65	55	9	5	5	7	2	5	12	7	5	7	4
0454-2*3	14	0	70	55	9	6	3	5	1	5	10	3	3	5	4
0463-1*3	13	0	60	57	8	7	5	7	1	9	12	7	5	7	4
0463-4*4	12	0	53	46	7	8	1	3	2	7	10	7	5	5	5
0473-1*3	8	0	53	53	5	5	5	5	1	9	10	7	3	5	4
0473-2*3	10	0	53	57	7	5	3	7	1	9	10	5	3	5	4
0473-3*3	9	0	50	50	5	5	5	5	1	3	10	5	3	5	4
OS473-1*3-2/S471	11	0	49	45	7	7	3	5	1	7	11	7	3	7	3

Table 6. Status of backcrossing experimental broccoli inbreds into an Arnund A prefix) or Ogura (O prefix) cytoplasmicmale sterile background, grown at the OSU Vegetable Research Farm in 2021. Evaluated Nov. 1, 2021.

²Trial was transplanted on Aug. 9 into 30 ft. rows spaces 30 in. apart. Plant spacing within row was 1 ft. ^YNumber of plants per plot that failed to form a single central head. ^xScale of 1 - 9 where 1 is least and 9 is most head exsertion above canopy. ^wScale of 1 - 9 where 1 is convex head, 5 is a flat head and 9 is an extreme domed head. ^vScale of 1 - 9 where 1 is smooth dome, 5 is segmented but touching florets and 9 is separated florets. ^uBranching depth on a 1 - 9 scale where less depth is preferred. ^tScale of 1 - 9 where 1 is coarse, 5 is medium and 9 is very fine bead size.^sScale of 1 - 9 where 1 is lighter and 9 is very dark green. ^tScale of 1 - 9 where 1 is soft and 9 is very firm head. ^qScale of 1 - 9 where 1 is least and 9 is best.

		Averag	e Score			% Cou	nt (Ove	erall)	
			Sweet-	Over-	Worst				Best
Line	Color	Flavor	ness	all	(1)	2%	3%	4%	(5)
S469 X S486	3.3	1.9	1.6	2.1	29%	50%	7%	14%	0%
S471 X S481	4.0	3.3	2.4	3.2	0%	29%	14%	50%	0%
S471 X S488	3.6	2.8	2.3	3.0	7%	14%	50%	29%	0%
S479 X S481	3.4	2.6	2.5	2.8	7%	36%	36%	14%	7%
S479 X S486	3.8	3.0	2.8	3.2	0%	29%	29%	29%	7%
S479 X S487	3.5	2.5	2.2	2.5	21%	29%	14%	29%	0%
S479 X S488	4.2	3.0	2.7	3.0	7%	21%	36%	21%	7%
EP X S481	4.0	3.2	3.0	3.3	0%	14%	50%	29%	7%
Emerald Pride	3.7	4.1	3.6	3.6	0%	14%	14%	57%	7%
Eiffel	2.6	2.1	2.3	2.3	21%	29%	29%	7%	0%
Cascadia	4.3	3.4	2.8	3.5	7%	0%	36%	50%	7%
Lieutenant	3.2	3.4	3.3	3.2	7%	14%	36%	29%	7%
Asteroid	4.2	3.6	3.1	3.2	0%	21%	36%	36%	0%
Castle Dome	2.5	2.9	2.8	2.6	14%	29%	36%	7%	7%

 Table 7. Average scores for sensory evaluation of processed (frozen) broccoli samples

 evaluated at the OSU Pilot Plant Dec. 1, 2021.

Research Progress Report for 2021-2022 Funded Projects

for the

Agricultural Research Foundation Oregon Processed Vegetable Commission

Title: Seed Corn Maggot Control in Snap Beans and Sweet Corn Without Chlorpyrifos (Lorsban)

Project Leader(s): Ed Peachey, Horticulture Department, OSU

Funding History: \$8,917 (2021)

<u>Abstract:</u> Chlorpyrifos (Lorsban) seed treatments for control of seed corn maggot in snap beans and sweet corn will soon vanish. One potential replacement insecticide is spinosad. The toxicologic profile of this insecticide is very favorable and spinosad provides protection to snap beans similar to chlorpyrifos, at least in NY tests (Nault 2007). Efficacy has yet to be demonstrated in Oregon and around the country. Spinosad is also approved for organic use in some crops, and in the case of organically grown snap beans, the benefit would be immense. One shortcoming of spinosad is cost, but low rates coupled with other seed treatment insecticides such as thiamethoxam may be a strategy to make spinosad a practical solution, even in conventional snap bean production.

Efficacy of spinosad seed treatments as a standalone and as a supplement for control of seed corn maggot (SCM) was tested at 5 snap bean sites and 2 sweet corn sites in the Willamette Valley from early May through late July in 2021. Seed was treated with Entrust, Tracer, or Regard, depending on seed source and rate required for the trials. Although damage from seed corn maggot was highly variable, important trends emerged. In all trials, there was some evidence that spinosad reduced damage to snap beans from seed corn maggot. The variety Pierroton had very poor emergence in 4 of the 5 snap bean trials, apparently unrelated to seed corn maggot damage. At the site with the most SCM damage (Keizer), the most effective seed treatment was Regard and reduced the presence of seed corn maggots on roots by 90%. Similarly, treatments that included spinosad plus thiamethoxam nearly eliminated SCM. In Exp 4 with much better emergence of Pierroton, Entrust and Regard seed treatment reduced damage from SCM by an average of 60%. Maggot damage in the 2 sweet corn trials was low and no effect of spinosad treatment on maggot damage was recorded.

Key Words: Chlorpyrifos, *Delia platura*, seed corn maggot, spinosad, spinosyn, bifenthrin, thiamethoxam, Regard, Entrust, Tracer

<u>Objective(s)</u>: Test efficacy of spinosad and bifenthrin for control of seed corn maggot in snap beans and sweet corn, and demonstrate crop safety for these insecticides.

Procedures:

Snap beans. Efficacy of spinosad for control of seed corn maggot in snap beans was tested at five sites in the Willamette Valley. Snap bean seed was treated with spinosad (*Entrust* @ 0.125 mg ai/seed and *Tracer* @ 0.25 mg ai/seed). For the 2 sites at the OSU vegetable Research farm (Exp 1 and 2), fresh dairy manure was vigorously rototilled into the soil at a rate of ~5 tons/A fresh wt before snap beans were planted. Exps 3, 4 and 5 were located on grower fields in both conventional (Keizer and Monroe) and organically (Macksburg) managed fields. Seeds (200 in each plot row) were planted with a handpush belt planter with 2 rows per plot, then blood meal applied over the seed row at 2 cups per 20 row ft in a 2-inch band to further encourage seed corn maggot damage. Plots were replicated three or four times. Snap bean emergence was counted in the entire plot and vigor rated. Stand counts were made before the trifoliate leaf expanded in a 3 ft length of row with poor emergence, then seedlings counted and excavated to assess root maggot damage.

Sweet corn var. 1477 was planted at sites in Corvallis and Macksburg as described for snap beans in Exp 1 and 2 with the exception that 40 seeds were planted per row in each plot. Plots were replicated three times. At the V1-V2 stage (first true leaf), plant stand was counted and plant vigor rated. At the V4-V5 stage, stand establishment including percentage of "runts" was rated including another plant vigor

assessment. Three ft of row was dug up that did not establish well during the V1 assessment, and damage due to seed corn maggot was assessed.

Accomplishments:

Snap beans (Tables 1 to 5). In Exp 1, there was little if any evidence from stand counts, vigor ratings or damage to seedlings that either Entrust of Tracer seed treatments reduced damage caused by seed corn maggot. In Exp 2, no larvae were found, and because of high variability among treatments, evidence was weak that treatments reduced damage from seed corn maggot. However, single degree of freedom contrasts between the Entrust and other treatments suggested that Entrust may have reduced seed corn maggot damage to roots (P=0.06). Tracer did not reduce damage to seedlings. Capture LFR (bifenthrin) was included as a treatment in this Exp but did not affect any of the variables measured for seed corn maggot damage.

Exp 3 (Keizer) had the greatest amount of damage of all 5 snap bean experiments, and maggots were frequently observed on roots despite the application of Mocap (ethoprop) by the grower to the entire field. In treatment 12, maggots were noted on 31% of the seedlings. The varieties Pierroton and SB4734 had very poor emergence with less than 25% of the seeds producing seedlings in some treatments. Entrust and Tracer did not appear to reduce seed corn maggot damage to the variety Pierroton when compared to nontreated seeds, but poor emergence may have masked treatment effects. Seeds of Huntingdon and Outlaw treated with spinosad + 972 (see footnote in Table 3 for active ingredients) appeared to be the most effective at reducing SCM damage, but nontreated seed was unavailable for this trial, and a direct comparison of effectiveness was not possible.

Percent emergence for the variety Pierroton was much greater in Exp 4 than Exps. 1, 2 and 3, but seed corn maggot damage to seedlings was again low and highly variable. However, there was some evidence that maggot damage was less with Entrust and Tracer treatments on Pierroton seeds. There were fewer snakeheads observed (damaged cotyledons) with these treatments for the variety Pierroton and a stunting rating later in the season indicated better growth with these treatments. The Regard treatments on the varieties Rogue and Pierroton provided by Syngenta were less effective than in Exp 3 and Capture LFR did not reduce damage.

Poor emergence of both Pierroton and Rogue varieties in Exp 5 was related to low moisture and high heat after planting. Maggots were not found, and maggot-damaged seedlings were fewer in the Regard treatment on the variety Rogue.

Sweet corn (Tables 6 and 7). Very few maggots or maggot damaged plants were found at the two sites. Even though trends suggest potential affects, there were no differences between treated and untreated seeds, statistically. A later evaluation (9-Jul) indicated that spinosad seed treatments may have improved crop growth slightly at the Corvallis site (Table 6).

	Insecticide		Rate	Stand	Vigor of	Stand	Snake	All	Maggots
				count	entire	count	heads	maggot	present
					plot			damaged	
								seeds or	
								seedlings	
				No./plot	10-dead,		no. ir	n 3 ft of affected	row
				(200	0=best				
				seeded in 20 ft)					
1	No insectició	le on seed		149	2.3	27.8	2.0	3.0	0.1
2	Entrust	0.125	mg ai/seed	146	2.5	26.9	1.4	3.4	0
3	Tracer	0.25	mg ai/seed	150	2.2	22.0	1.1	2.4	0
ANC	OVA (P>F)			ns	ns	0.15	ns	ns	ns
FLS	D (0.05)			-	-	6.4	-	-	_

Table 1 (Exp. 1). Efficacy of spinosad for control of seed corn maggot in snap beans var. Pierroton at unifoliate growth stage. OSU Vegetable Farm, planted May 8 and evaluated May 24, 2021 (n=4).

	Insecticide		Rate	Stand	Vigor of	Stand	Snake	All maggot	Maggots
				count	entire	count	heads	damaged seeds	present
					plot			or seedlings	
				No./plot (200 seeded inn20 ft)	10-dead, 0=no damage		no. i	n 3 ft of affected row	
1	No insecticide	on seed		111	1.1	17	0.3	2.5	0
2	Entrust	0.125	mg ai/seed	120	0.1	18	0.7	0.7	0
3	Tracer	0.25	mg ai/seed	101	0.3	14	0.3	2.7	0
4	Capture LFR	8.5	fl oz/a	109	2.0	18	1.0	2.3	0
AN	IOVA (P>F)			0.12	ns	ns	ns	ns	ns
FPI	LSD (0.05)			26	-	-	-	-	-

Table 2 (Exp 2). Efficacy of spinosad for control of seed corn maggot in snap beans var. Pierroton at unifoliate growth stage. OSU Vegetable Farm, Corvallis, OR (n=4), planted May 18 and evaluated June 10, 2021.

Table 3 (Exp 3). Efficacy of spinosad and other seed treatments on seed corn maggot in snap beans at unifoliate growth stage, Keizer, OR. Planted 13-May-2021; evaluated 1-June-2021 unless noted (n=3).

	Cultivar/Source of		Rate	Stand	No.	Snake	All	00	Stunting
	seed treatment	insecticide			seedlings	heads	damaged seeds or seedlings	visible on roots	(29-Jun)
				no./plot (200 seeded)		n 3 ft of row	in area with poo	or stand	%
1	Pierroton/IR-4	Nontreated ^a	-	57	9.0	0.7	3.0	0.7	30
2	Pierroton/IR-4	Entrust ^a	0.125 mg ai/seed	38	4.7	1.3	2.3	0.0	43
3	Pierroton/IR-4	Tracer ^a	0.25 mg ai/seed	77	8.3	1.3	2.7	0.7	17
4	Pierroton/Syn	Regard	0.15 mg ai/seed	74	7.0	1.3	4.7	0.0	17
5	Pierroton/Syn	Nontreated	-	35	7.0	2.3	4.7	2.3	77
6	Pierroton/Syn	Regard	0.15 mg ai/seed	76	10.3	1.0	3.7	0.0	0
7	Pierroton/Syn	Nontreated ^a	-	86	10.3	4.0	7.0	3.7	50
8	Pierroton/Syn	Capture LFR ^a	16 oz/A, 4 inch band over row	110	10.0	0.7	2.7	0.3	23
9	SB4734/Syn	Nontreated	-	44	6.7	1.7	5.0	1.0	60
10	SB4734/Syn	Nontreated	-	52	6.7	1.3	4.7	2.0	40
11	SB4734/Syn	Regard	0.15 mg ai/seed	72	9.0	0.7	2.0	0.3	8
12	Rogue/Syn	Nontreated	-	104	13.7	2.7	7.0	4.3	20
13	Rogue/Syn	Regard	0.15 mg ai/seed	97	9.3	0.7	4.0	0.7	8
14	Huntingdon/Syn	972 ^ь	-	169	22.3	2.3	3.0	0.0	10
15	Huntingdon/Syn	333°	-	166	20.7	1.3	4.3	1.7	28
16	Huntingdon/Syn	972 + spinosad (mg/seed	(Regard) @ 0.15	167	17.0	0.0	1.3	0.0	8
17	Outlaw/Syn	972 ^b	-	170	15.3	1.3	2.7	0.0	5
18	Outlaw/Syn	333°	-	169	19.3	0.3	0.3	0.0	13
19	Outlaw/Syn	972 + spinosad (mg/seed	(Regard) @ 0.15	170	20.3	0.7	0.7	0.3	23
	ANOVA (Pr>F)	-		0.001	0.001	0.5	0.04	0.13	0.002
	FPLSD (0.05)			28	7.3	ns	3.7	2.9	2.9
a Soo	d also treated with	funciaida							

^a Seed also treated with fungicide

^b 972 = Captan, 2.5 fluid oz; thiram 2.0 fl oz.; mefenoxam 0.45 fluid oz.; **thiamethoxam 1.28 fluid oz**.; streptomycin 0.3 oz/A; sedaxane (fungicide) 0.08 fl oz, all applied at rate specified/100 lbs of seed.

^c 333 = Captan, 2.5 fluid oz; thiram 2.0 fl oz.; mefenoxam 0.45 fluid oz.; **thiamethoxam 1.28 fluid oz**.; streptomycin 0.3 oz, all applied at rate specified/100 lbs of seed.

	Snap bean	Seed treatment/	Rate	Stand in	Vigor	Seedling		All	Maggots	Stunting
	cultivar	source of seed		plot	rating	count	heads	maggot- damaged	visible	(29-Jun)
								seeds or		
								seedlings		
				200 seeded/	,		no. in 3 f	t of affected re	0 <i>w</i>	%
				25 ft	0=no damage					
1	Pierroton	Nontreated/Syn		175	2.5	27	0.5	2.5	0	23
2	Pierroton	Regard/Syn	0.15 mg ai/seed	183	1.3	29	1.0	1.0	0	10
3	Rogue	Nontreated/Syn		172	0.0	33	2.0	3.3	0	14
4	Rogue	Regard/Syn	0.15 mg ai/seed	178	0.0	26	1.5	2.0	0	6
5	Pierroton	Nontreated/IR-4		152	2.3	23	2.3	3.3	0	29
6	Pierroton	Entrust/IR-4	0.125 mg ai/seed	151	2.8	28	0.8	1.5	0	13
7	Pierroton	Tracer/IR-4	0.25 mg ai/seed	149	1.8	26	0.8	2.5	0	15
8	Pierroton	Capture LFR; banded over seed row	8.5 oz/a	162	2.5	24	1.3	2.5	1.3	15
		10 W								
	ANOVA (I	/		0.01	0.2	0.06	0.11	0.13	0.45	0.68
	FPLSD (0.0	05)		11	ns	6	1.3	1.7	ns	ns

Table 4 (Exp 4). Efficacy of spinosad and other seed treatments on seed corn maggot in snap beans at unifoliate growth stage, Monroe, OR. Planted 17-May; Evaluated 4-Jun unless noted. N=4.

Table 5 (Exp 5). Efficacy of spinosad and other seed treatments on seed corn maggot in snap beans at unifoliate growth stage, Macksburg, OR. Planted 3-Jun; evaluated 7-Jul (n=3).

	Snap bean cultivar	Insecticide/ Source of seed treatment	Rate	Stand in plot	Vigor rating	Stand	Snake heads	All maggot- damaged seeds or seedlings	Maggots present
				130 seeded/ 15 ft	10=dead; 0=no damage		no.	in 3 ft of affected row-	
1	Pierroton	Nontreated/Syn	-	41	3.7	7.0	0	3.0	0
2	Pierroton	Regard/Syn	0.15 mg ai/seed	44	1.5	11.7	0	0.3	0
3	Rogue	Nontreated/Syn	-	63	2.3	13.0	0	4.0	0
4	Rogue	Regard/Syn	0.15 mg ai/seed	54	1.7	15.0	0	0.3	0
5	Pierroton	Nontreated/IR-4	-	30	5.0	9.3	0	0.3	0
6	Pierroton	Entrust/IR-4	0.125 mg ai/seed	23	3.0	4.3	0	0.0	0
7	Pierroton	Tracer/ IR-4	0.25 mg ai/seed	22	6.3	7.0	0	0.3	0
	ANOVA (I	₽>F)		0.01	0.07	0.03	ns	0.08	ns
	FPLSD (0.	· ·		23	3.3	6.3	-	3.2	-

Seed treatment	Product rate	Stand	Vigor rating	Seedling count	Damaged seedlings	Maggots present	Vigor	Runts
		sown/plot)	(22-Jun)	(22-Jun)	(22-Jun)	(22-Jun)	(9-Jul)	(9-Jul)
GSS1477	mg ai/seed	no/plot	10-dead, 0=best	No.	in 3 ft of affected	l row	10-dead, 0=best	no./plot
1 No insecticide	N/A	31.1	2.8	4.8	0.8	0	1.9	3.5
2 Entrust	0.125	32.6	2.4	6.8	0.3	0	0.2	3.3
3 Entrust	0.25	31.0	2.5	5.3	0.5	0	1.0	3.0
ANOVA (PR>F	⁻)	0.51	0.91	0.38	0.44	-	0.06	0.91
FPLSD (0.05)		ns	ns	ns	ns	ns	1.3	ns

Table 6. Efficacy of Entrust for seed corn maggot control in sweet corn, Corvallis, OR. Planted 18-May 2021.

Table 7. Efficacy of Entrust for seed corn maggot control in sweet corn, Macksburg, OR, 2021. Planted 2-Jun-2021 and evaluated 7-Jul at V6.

	Seed treatment	Rate	Stand (40 seeds sown/plot)	Vigor rating	Runts	Damaged seedlings	Maggots present
GSS	1477	mg ai/seed	no/plot	10-dead, 0=best	no./plot	no./plot	no./plot
1	No insecticide/IR-4	-	27.3	1.8	2.7	0	0
2	Entrust/IR-4	0.125	28.0	0.3	3.3	0	0
3	Entrust/IR-4	0.25	25.7	1.3	2.7	0	0
	FPLSD (0.05)		ns	ns	ns	ns	ns

Impacts:

Seed corn maggot (SCM) damage to snap beans was highly variable within sites and season. Only one of the sites (EXP3) had maggot damage that allowed us to reliably evaluate spinosad efficacy on SCM for Pierroton seeds. Three of the sites demonstrated spinosad efficacy on SCM for the larger seeded variety Rogue. Spinosad also reduced SCM damage to Huntingdon and Outlaw varieties at Keizer. The spinosad formulation applied to the larger-seeded varieties was Regard rather than Entrust and Tracer, and the Regard seed treatments were applied by Syngenta. Particularly effective were treatments 16 and 19 on Huntingdon and Outlaw varieties, respectively, that included both thiamethoxam (972) and spinosad applied to seeds (Table 3).

Pierroton is a very small seeded variety and emergence is often poor compared to other varieties (pers. comm. Dr. Myers). We have noted in the past that Pierroton emergence is often hampered by seed corn maggot, even when seed is commercially treated with thiamethoxam. Perhaps seed surface area of Pierroton is so much smaller than other varieties that the amount of insecticide applied is insufficient to suppress or control SCM. Interestingly, the higher rate of spinosad applied to seeds via the formulation Tracer often had damage comparable to the non-treated seeds, while the lower rate applied via Entrust was typically more effective. Tracer was used in this study because characteristics of the Entrust formulation prevented application of the required spinosad rate to snap bean seeds.

Capture banded over the seed row reduced seed corn damage at most sites and may be an important alternative until spinosad products are labeled as seed treatments. One caveat noted was the above average emergence of Pierroton at the site near Monroe, for reasons unknown.

Registrants always request demonstration of crop safety before pesticides can be labeled for specific uses. There was no indication that any of the treatments applied in these trials injured snap beans or sweet corn.

Relation to Other Research:

This project supports our program goals of providing integrated pest management tools for producers of processed vegetables. Specifically, this work will ultimately provide the efficacy and crop safety data needed to support a label for spinosad insecticide on both organic and conventionally grown snap beans. Bayer is the registrant of interest currently, as Syngenta no longer has access to the active ingredient to produce Regard. Bayer has indicated that more crop safety data is needed before this registration can move forward. A residue tolerance already exists for this product. Sponsors of this work include Interregional Project #4 (USDA) and Syngenta Corp.

Research/Extension Progress Report for 2020-2021 Funded Projects Progress Report for the Agricultural Research Foundation Oregon Processed Vegetable Commission

Title: Monitoring and Reporting Insect Pests in Cole Crops and Sweet Corn (VegNet)

Project leaders: Jessica Green and Ed Peachey; OSU Department of Horticulture 4017 ALS Bldg., Corvallis, OR 97331-7304 **Cooperators**: Thomas Barnett, Mike Christensen, Nick Ebner, Kendal Johnson, Jim Schlechter, Scott Zielinski

Funding history:

2018-19: \$20,392 2019-20: \$19,714 2020-21: \$18,364 2021-22: \$14,910

ABSTRACT

VegNet is a regional pest monitoring, detection, and alert service designed to benefit the Oregon processed vegetable industry. It has been operational for 25 years and is now an integral resource for many people. The program provides activity data, based on passive and active sampling, of 10+ species of common insect pests. Crops monitored include broccoli, cauliflower, sweet corn, and snap beans. Each week between May and September, subscribers receive a summary of data trends at each site, potential impacts, and other items of interest regarding vegetable crop production. These weekly reports are sent by email to over 400 subscribers. Cooperating growers and ag industry representatives then use the data to make informed IPM decisions. However, the program is free and utilized by home gardeners, OSU Extension personnel, state agencies, and the general public. Many of the species we track have wide host ranges (grasses, small fruits, nursery stock, etc.) and because monitoring occurs throughout the mid-Willamette Valley, subscribers often 'tune in' to become informed of possible outbreaks that might affect them. Comparative analyses between sites and years can reveal trends that directly inform pest management priorities. We make every effort to provide clear and concise information about insect issues. Two companion research blogs allow users to delve deeper into pest identification and biology.

KEYWORDS: insect, monitoring, sweet corn, broccoli, snap beans, IPM, pest, newsletter, black cutworm, Extension

OBJECTIVE

1. Continue operation of a regional pest monitoring and reporting network for damaging crop pests including armyworm, black cutworm, variegated cutworm, diamondback moth, cabbage looper, 12-spot beetle, and aphids.

PROCEDURES

Field sites were selected based on target crop, relative geographical location, and grower cooperation. At

each location, 'Texas cone' wire mesh traps were placed at field edges and baited with pheromone lures (AlphaScents, Inc.). Lures were changed every 4 weeks. Other passive sampling techniques included yellow sticky cards and delta wing traps (Great Lakes IPM). Insects from traps were collected weekly, counted, and retained for identification as necessary. Direct sampling was conducted periodically and included sweep nets to quantify larvae, and leaf pulls for presence/absence of aphids. Monitoring stations were set at 5 different field site locations throughout the Willamette Valley, OR. Sampling began the week of May 3rd and ended August 30th, 2021. Weekly reports were issued via an external email marketing system. Web traffic metrics (email opens, links clicked, etc.) of each report were monitored as a means of measuring impact of weekly content. A grower field day did not occur this year.

ACCOMPLISHMENTS

OBJ. 1 - Regional pest monitoring and reporting.

Continuous, long-term datasets such as VegNet provide a clearer picture of pest activity than programs that only monitor for one year or one season. One of the most notable items from 2021 was the early boom of black cutworm (BCW). First detected at the vegetable research farm in Corvallis on May 10th, an elevated count was also noted at the Lakebrook sweet corn site (near Keizer) by May 24th, and levels remained above average for most of the season. In contrast, variegated cutworm (VCW) was also about 70% higher in Corvallis in early May, but quickly leveled off and the regional average remained below normal for the rest of the season.

Brassica pests such as diamondback moth (DBM) and cabbage looper (CL) were relatively low at monitored sites. We did receive feedback from field scouts that DBM was above average at their fields (not monitored by VegNet), so in response, an informational training blog post was developed on July 29th and the link was sent out as part of the Week 13 report. The post covered biology of DBM, how to accurately scout for them, and why normal insecticide sprays may not be as effective as they once were.

A certain number of challenges plagued this year's sampling season. Sites were limited due the budget reduction, and this affects a true 'regional average' because some weeks, that average was based on only 2 or 3 site locations. The heat events that occurred took a toll on people and vegetables alike! And finally, this year's season was cut short by about 3 weeks due to program manager's unexpected travel/family emergency. A full archive of weekly reports from 2021 is <u>available here</u>.

IMPACTS

Short term impacts to program subscribers are evident each week. Through email reports, users gain immediate benefit from site-specific pest activity alerts. These estimates of insect pest activity allow producers to make immediate, informed spray decisions. We have heard feedback from both industry and cooperators that VegNet is useful for their crop production goals. We hope that this information will eventually translate into medium and long-term impacts as growers embrace pest monitoring as a critical IPM tool.

Other impacts of the program are notable even when the content we produce is not directly related to processed vegetables. According to built-in analytics of the <u>companion blog site</u>, 74% of annual (Dec-Dec) views of the website occurred between March and July 2021. Of those views, 75% (3,482) were to

access material about cicadas. Similar to last year's 'hot topic' of Asian giant hornet, public users were very interested in the 2021 brood of this interesting insect. While we don't have the large boom of periodic species here in Oregon, there was much interest throughout the community. A local elementary school sent me a photo of a newly hatched cicada, and it made for a good teaching experience for the kids.

The report issued in Week 10 included photos of heat stress in vegetables and also a link to an agricultural economics manuscript about irrigation choices in times of extreme heat and water scarcity. The Week 10 email received more opens and clicks than any other week of the year.

RELATION TO OTHER RESEARCH / EXTENSION

VegNet has now become integrated into the Oregon IPM Center, with funding secured from a NIFA-Extension Implementation Program grant. The purpose of the grant is to "increase IPM implementation among the clientele served by an eligible institution". This partnership is mutually beneficial; VegNet is a well-established IPM program that can now be recognized under the umbrella of the OIPMC, and the Center has existing staff with expertise in pest modeling. Program staff are now more closely aligned and have started analyzing migration patterns, environmental parameters, and insect patterns as a way to make predictions that can help growers prepare for potential outbreaks.

Corn earworm (CEW) migration is highly dependent on weather and wind patterns. I recently compiled and submitted over 2,200 distinct data points of CEW activity, ranging from 1999 to 2015. The data will be incorporated into a national-scope journal article about CEW population dynamics. The article is being authored by a post-doc at North Carolina State University.